Receptor binding mechanism and immune evasion capacity of SARS-CoV-2 BQ.1.1 lineage

被引:1
|
作者
Wang, Chenghai [1 ]
Zhang, Yu [2 ]
Yang, Chen [2 ]
Ren, Wenlin [2 ]
Qiu, Chenguang [3 ]
Fan, Shilong [3 ]
Ding, Qiang [2 ]
Lan, Jun [1 ]
机构
[1] Hunan Univ, Sch Biomed Sci, Changsha, Peoples R China
[2] Tsinghua Univ, Ctr Infect Dis Res, Sch Med, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Sch Life Sci, Beijing, Peoples R China
关键词
SARS-CoV-2; BQ.1.1; lineage; Pseudovirus cell entry; Binding affinity; Crystal structure; Immune evasion;
D O I
10.1016/j.virol.2024.110241
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The global spread of COVID-19 remains a significant threat to human health. The SARS-CoV-2 BQ.1.1 lineage, including BA.5.2, BF.7, BQ.1 and BQ.1.1, caused a new soaring of infection cases due to rapid transmission. However, the receptor binding mechanism and immune evasion capacity of these variants need to be explored further. Our study found that while the BA.5.2, BF.7 and BQ.1.1 variants pseudovirus had similar cell entry efficiency, the BF.7 and BQ.1.1 RBD bound to human ACE2 (hACE2) with a slightly stronger affinity than the BA.5.2 RBD. Structural analysis revealed R346T, K444T, and N460K mutations altered RBD-hACE2 binding interface details and surface electrostatic potential of BQ.1.1 RBD. Serum neutralization tests showed BQ.1.1 variant had stronger immune evasion capacity than BA.5.2 and BF.7 variants. Our findings illustrated the receptor binding mechanism and serological neutralization activity of the BA.5.2, BF.7 and BQ.1.1 variants, which verified the necessity for further antibody therapy optimization and vaccination development.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Deep mutational scans of XBB.1.5 and BQ.1.1 reveal ongoing epistatic drift during SARS-CoV-2 evolution
    Taylor, Ashley L.
    Starr, Tyler N.
    PLOS PATHOGENS, 2023, 19 (12)
  • [22] Neutralization of SARS-CoV-2 BQ.1.1, CH.1.1, and XBB.1.5 by breakthrough infection sera from previous and recent waves in China
    Wang, Xun
    Jiang, Shuai
    Jiang, Shujun
    Li, Xiangnan
    Ai, Jingwen
    Lin, Ke
    Lv, Shiyun
    Zhang, Shixuan
    Li, Minghui
    Li, Jixi
    Dai, Lili
    Hu, Zixin
    Zhang, Wenhong
    Zhang, Yanliang
    Wang, Pengfei
    CELL DISCOVERY, 2023, 9 (01)
  • [23] Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement
    McCallum, Matthew
    Czudnochowski, Nadine
    Rosen, Laura E.
    Zepeda, Samantha K.
    Bowen, John E.
    Walls, Alexandra C.
    Hauser, Kevin
    Joshi, Anshu
    Stewart, Cameron
    Dillen, Josh R.
    Powell, Abigail E.
    Croll, Tristan, I
    Nix, Jay
    Virgin, Herbert W.
    Corti, Davide
    Snell, Gyorgy
    Veesler, David
    SCIENCE, 2022, 375 (6583) : 864 - +
  • [24] Neutralization of SARS-CoV-2 BQ.1.1, CH.1.1, and XBB.1.5 by breakthrough infection sera from previous and recent waves in China
    Xun Wang
    Shuai Jiang
    Shujun Jiang
    Xiangnan Li
    Jingwen Ai
    Ke Lin
    Shiyun Lv
    Shixuan Zhang
    Minghui Li
    Jixi Li
    Lili Dai
    Zixin Hu
    Wenhong Zhang
    Yanliang Zhang
    Pengfei Wang
    Cell Discovery, 9
  • [25] A bispecific antibody exhibits broad neutralization against SARS-CoV-2 Omicron variants XBB.1.16, BQ.1.1 and sarbecoviruses
    Wang, Yingdan
    Hao, Aihua
    Ji, Ping
    Ma, Yunping
    Zhang, Zhaoyong
    Chen, Jiali
    Mao, Qiyu
    Xiong, Xinyi
    Rehati, Palizhati
    Wang, Yajie
    Wang, Yanqun
    Wen, Yumei
    Lu, Lu
    Chen, Zhenguo
    Zhao, Jincun
    Wu, Fan
    Huang, Jinghe
    Sun, Lei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [26] Immune Evasion of SARS-CoV-2 Omicron Subvariants
    Ke, Hanzhong
    Chang, Matthew R.
    Marasco, Wayne A.
    VACCINES, 2022, 10 (09)
  • [27] Innate immune evasion strategies of SARS-CoV-2
    Minkoff, Judith M. M.
    tenOever, Benjamin
    NATURE REVIEWS MICROBIOLOGY, 2023, 21 (03) : 178 - 194
  • [28] Innate immune evasion strategies of SARS-CoV-2
    Judith M. Minkoff
    Benjamin tenOever
    Nature Reviews Microbiology, 2023, 21 : 178 - 194
  • [29] SARS-CoV-2 targets MAVS for immune evasion
    Alessia Zotta
    Alexander Hooftman
    Luke A. J. O’Neill
    Nature Cell Biology, 2021, 23 : 682 - 683
  • [30] SARS-CoV-2 targets MAVS for immune evasion
    Zotta, Alessia
    Hooftman, Alexander
    O'Neill, Luke A. J.
    NATURE CELL BIOLOGY, 2021, 23 (07) : 682 - 683