High-Entropy Design Toward Ultrahigh Energy Storage Density Under Moderate Electric Field in Bulk Lead-Free Ceramics

被引:4
|
作者
Zhao, Hanyu [1 ]
Cao, Wenjun [1 ]
Liang, Cen [1 ]
Wang, Changyuan [1 ]
Wang, Chunchang [1 ]
Cheng, Zhenxiang [2 ]
机构
[1] Anhui Univ, Sch Phys & Mat Sci, Lab Dielect Funct Mat, Hefei 230601, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Fac Engn & Informat Sci, Squires Way, North Wollongong, NSW 2500, Australia
基金
中国国家自然科学基金;
关键词
energy storage; high entropy ceramics; interfacial polarization; polyphase; GRAIN-BOUNDARIES; FREE RELAXORS; PERFORMANCE; TRANSITION; NANOSCALE; STRATEGY;
D O I
10.1002/adfm.202411954
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrostatic capacitors with ultrahigh energy-storage density are crucial for the miniaturization of pulsed power devices. A long-standing challenge is developing dielectric materials that achieve ultrahigh recoverable energy density Wrec >= 10 J cm-3 under moderate electric fields (30 <= E <= 50 kV mm-1). Herein, a specific high-entropy strategy is proposed to modulate the phase structure and interfacial polarization of medium-entropy base materials using linear dielectrics. This strategy ensures a sufficient polar phase and a high enough electric field for complete polarization, thereby achieving ultrahigh Wrec by enhancing polarization strength. The validity of this strategy is demonstrated in the (Na0.282Bi0.282Ba0.036Sr0.28Nd0.08)TiO3-xCa0.7Bi0.2TiO3 (NBBSNT-xCBT) (x = 0-0.15) system. The CBT-modulated samples exhibit a polyphase structure of R3c, P4bm, and Pm-3m with reduced remnant polarization (Pr). Additionally, the addition of CBT effectively suppresses interfacial polarization, enhancing the maximum polarization (Pmax). These factors significantly improve the value of triangle P = Pmax - Pr. As a result, an ultrahigh Wrec of 10.5 J cm-3 with a high-efficiency eta of 80.3% is obtained in the x = 0.1 sample under a moderate electric field of 45 kV mm-1 for the first time. This work paves the way for achieving superior energy-storage performance under moderate electric fields. By adjusting the phase structure and interfacial polarization through appropriate high entropy design, the system maintains a sufficient polar phase and a sufficiently high electric field to ensure full polarization of the polar phase. This approach achieves ultrahigh recoverable energy density (Wrec) by enhancing polarization strength rather than relying on traditional strategies of increasing breakdown strength. image
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Entropy regulation enhanced superior energy storage density and high temperature stability in lead-free relaxors
    Chen, Zhemin
    Pu, Yongping
    Ning, Yating
    Wu, Chunhui
    Zhang, Lei
    Wang, Bo
    Zhang, Xuqing
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (07) : 4680 - 4688
  • [42] Enhanced dielectric temperature stability and energy storage properties of BNT-based lead-free ceramics under medium electric field
    Neng Qin
    Xiao-ming Chen
    Li-na Liu
    Li Tian
    Zhi-yong Liu
    Journal of Materials Science: Materials in Electronics, 2025, 36 (10)
  • [43] A Lead-Free and High-Energy Density Ceramic for Energy Storage Applications
    Correia, Tatiana M.
    McMillen, Mark
    Rokosz, Maciej K.
    Weaver, Paul M.
    Gregg, John M.
    Viola, Giuseppe
    Cain, Markys G.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (09) : 2699 - 2702
  • [44] Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics
    Huang, Wei
    Chen, Ying
    Li, Xin
    Wang, Genshui
    Liu, Ningtao
    Li, Song
    Zhou, MingXing
    Dong, Xianlin
    APPLIED PHYSICS LETTERS, 2018, 113 (20)
  • [45] Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains
    Qi, He
    Zuo, Ruzhong
    Xie, Aiwen
    Tian, Ao
    Fu, Jian
    Zhang, Yi
    Zhang, Shujun
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (35)
  • [46] Simultaneous excellent energy storage density and efficiency under applied low electric field for high entropy relaxor ferroelectric ceramics
    Wang, Ting
    Li, Yajie
    Zhang, Xuefeng
    Zhang, Duoduo
    Gong, Weiping
    MATERIALS RESEARCH BULLETIN, 2023, 157
  • [47] Design strategy of high-entropy perovskite energy-storage ceramics: A review
    Ning, Yating
    Pu, Yongping
    Wu, Chunhui
    Chen, Zhemin
    Zhang, Xuqing
    Zhang, Lei
    Wang, Bo
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (08) : 4831 - 4843
  • [48] Flexible ultrahigh energy storage density in lead-free heterostructure thin-film capacitors
    Yang, B. B.
    Guo, M. Y.
    Li, C. H.
    Song, D. P.
    Tang, X. W.
    Wei, R. H.
    Hu, L.
    Lou, X. J.
    Zhu, X. B.
    Sun, Y. P.
    APPLIED PHYSICS LETTERS, 2019, 115 (24)
  • [49] Lead-Free Ceramics with High Energy Density and Reduced Losses for High Temperature Applications
    Correia, Tatiana
    Stewart, Mark
    Ellmore, Angela
    Albertsen, Knuth
    ADVANCED ENGINEERING MATERIALS, 2017, 19 (06)
  • [50] High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics
    Zhang, Lei
    Pu, Yongping
    Chen, Min
    Wei, Tianchen
    Keipper, Wade
    Shi, Ruike
    Guo, Xu
    Li, Run
    Peng, Xin
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (01) : 71 - 77