A novel Gauss-Jacobi quadrature for multiscale Boltzmann solvers

被引:0
|
作者
Wang, Lu [1 ]
Liang, Hong [1 ]
Xu, Jiangrong [1 ]
机构
[1] Hangzhou Dianzi Univ, Dept Phys, Hangzhou 310018, Peoples R China
关键词
Gauss-Jacobi; Gauss-Hermite; Velocity discretization; Boltzmann solver; SIMULATION; CONTINUUM;
D O I
10.1016/j.aml.2024.109291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a novel Gauss-Jacobi quadrature rule designed for infinite intervals, which is specifically applied to the velocity discretization in multi-scale Boltzmann solvers. Our method utilizes a newly formulated bell-shaped weight function for numerical integration. We establish the relationship between this new quadrature and the classical Gauss-Jacobi, as well as the Gauss-Hermite quadrature rules, and we compare the resulting discrete velocity distributions with several commonly used methods. Additionally, we validate the performance of our method through numerical simulations of flows with various Knudsen numbers. The proposed quadrature provides fresh insights into velocity space discretization.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] EXPONENTIAL CONVERGENCE OF GAUSS-JACOBI QUADRATURES FOR SINGULAR INTEGRALS OVER SIMPLICES IN ARBITRARY DIMENSION
    Chernov, Alexey
    Schwab, Christoph
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1433 - 1455
  • [32] 一类Gauss-Jacobi数值求积公式的极限性质
    张浩
    王祝园
    张文明
    大学数学, 2009, 25 (04) : 78 - 80
  • [33] Gauss-Radau and Gauss-Lobatto interval quadrature rules for Jacobi weight function
    Milovanovic, GV
    Cvetkovic, AS
    NUMERISCHE MATHEMATIK, 2006, 102 (03) : 523 - 542
  • [34] Gauss-Radau and Gauss-Lobatto interval quadrature rules for Jacobi weight function
    Gradimir V. Milovanović
    Aleksandar S. Cvetković
    Numerische Mathematik, 2006, 102 : 523 - 542
  • [35] Stieltjes Polynomials and Gauss-Kronrod Quadrature for Jacobi Weight Functions
    Franz Peherstorfer
    Knut Petras
    Numerische Mathematik, 2003, 95 : 689 - 706
  • [36] Gauss-Jacobi-type quadrature rules for fractional directional integrals
    Pang, Guofei
    Chen, Wen
    Sze, K. Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 597 - 607
  • [37] INTERNALITY OF AVERAGED GAUSS QUADRATURE RULES FOR CERTAIN MODIFICATION OF JACOBI MEASURES
    Djukic, D. L. J.
    Djukic, R. M. Mutavdzic
    Reichel, L.
    Spalevic, M. M.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (04) : 426 - 442
  • [38] Fast and reliable high-accuracy computation of Gauss–Jacobi quadrature
    Amparo Gil
    Javier Segura
    Nico M. Temme
    Numerical Algorithms, 2021, 87 : 1391 - 1419
  • [39] EXPLICIT INVERSION OF LAPLACE TRANSFORM BY A JACOBI-GAUSS QUADRATURE APPROXIMATION
    CARR, HM
    COOK, GE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (06) : 777 - &
  • [40] Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions
    Peherstorfer, F
    Petras, K
    NUMERISCHE MATHEMATIK, 2003, 95 (04) : 689 - 706