QL-YOLOv8s: Precisely Optimized Lightweight YOLOv8 Pavement Disease Detection Model

被引:1
|
作者
Guo, Jinbo [1 ]
Wang, Shenghuai [1 ]
Chen, Xiaohui [1 ]
Wang, Chen [1 ]
Zhang, Wei [1 ]
机构
[1] Hubei Univ Automot Technol, Sch Mech Engn, Shiyan 442002, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Accuracy; YOLO; Feature extraction; Road traffic; Object recognition; Surface cracks; Defect detection; Road transportation; Maintenance engineering; Road surface disease detection; lightweight; YOLOv8; MLCA; DWR; BiFPN; NETWORK;
D O I
10.1109/ACCESS.2024.3452129
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting road surface defects is essential for highway maintenance, yet the application of most models is hindered by the limitations of existing detection resources. To address this challenge, we have enhanced YOLOv8, introducing a lightweight detection model dubbed QL-YOLOv8s. In this study, we employ the DIoU loss function to optimize bounding box regression, taking into account both the size of overlapping areas and the distance between the centers of boxes, thereby handling targets of various sizes and shapes with improved localization accuracy. Moreover, a lightweight Mixed Local Channel Attention (MLCA) has been incorporated into the backbone of the model, aimed at enhancing the recognition capabilities in complex environments without in-creasing the model's burden. Furthermore, by integrating the Dilated Wrapping Residual (DWR) module and C2f into BiFPN, we developed a new neck structure, BiFPN-D, and introduced a lightweight detection head, Detect-T3, thus augmenting the model's feature perception capacity, reducing parameter count, and boosting detection speed. Based on the RDD 2022 public dataset, QL-YOLOv8s demonstrated a reduction in parameter count and size by 37%, a decrease in com-putational requirements by 19%, and achieved an average precision of mAP0.5 at 95.8%. These results underscore the contribution and practical value of our method to the technology of automatic road defect detection.
引用
收藏
页码:128392 / 128403
页数:12
相关论文
共 50 条
  • [41] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201
  • [42] Lightweight Insulator and Defect Detection Method Based on Improved YOLOv8
    Liu, Yanxing
    Li, Xudong
    Qiao, Ruyu
    Chen, Yu
    Han, Xueliang
    Paul, Agyemang
    Wu, Zhefu
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [43] A lightweight rice pest detection algorithm based on improved YOLOv8
    Zheng, Yong
    Zheng, Weiheng
    Du, Xia
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Lightweight Detection of Ceramic Tile Surface Defects on Improved YOLOv8
    Yu, Songsen
    Xue, Guopeng
    He, Huang
    Zhao, Gui
    Wen, Huosheng
    Computer Engineering and Applications, 2024, 60 (18) : 88 - 102
  • [45] Lightweight Road Damage Detection Method Based on Improved YOLOv8
    Xu, Tiefeng
    Huang, He
    Zhang, Hongmin
    Niu, Xiaofu
    Computer Engineering and Applications, 60 (14): : 175 - 186
  • [46] Lightweight Corn Leaf Detection and Counting Using Improved YOLOv8
    Ning, Shaotong
    Tan, Feng
    Chen, Xue
    Li, Xiaohui
    Shi, Hang
    Qiu, Jinkai
    SENSORS, 2024, 24 (16)
  • [47] Lightweight YOLOv8 Networks for Driver Profile Face Drowsiness Detection
    Zhang, Meng
    Zhang, Fumin
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (06) : 1331 - 1343
  • [48] IMPROVEMENT OF YOLOV8 OBJECT DETECTION BASED ON LIGHTWEIGHT NECK MODEL FOR COMPLEX IMAGES
    Sung, Tien-Wen
    Li, Jie
    Lee, Chao-Yang
    Fang, Qingjun
    IMAGE ANALYSIS & STEREOLOGY, 2025, 44 (01): : 69 - 86
  • [49] A lightweight grape detection model in natural environments based on an enhanced YOLOv8 framework
    Wu, Xinyu
    Tang, Rong
    Mu, Jiong
    Niu, Yupeng
    Xu, Zihan
    Chen, Ziao
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [50] Fasteners quantitative detection and lightweight deployment based on improved YOLOv8
    Bai, Tangbo
    Duan, Jiaming
    Wang, Ying
    Fu, Haochen
    Zong, Hao
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (10):