Multi-objective meta-learning

被引:1
|
作者
Ye, Feiyang [1 ,2 ]
Lin, Baijiong [3 ]
Yue, Zhixiong [1 ,2 ]
Zhang, Yu [1 ,6 ]
Tsang, Ivor W. [2 ,4 ,5 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
[2] Univ Technol Sydney, Australian Artificial Intelligence Inst, Sydney, Australia
[3] Hong Kong Univ Sci & Technol Guangzhou, Guangzhou, Peoples R China
[4] Agcy Sci Technol & Res, Ctr Frontier AI Res, Singapore, Singapore
[5] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore, Singapore
[6] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
关键词
Meta learning; Multi-objective optimization; Multi-task learning; GRADIENT DESCENT; OPTIMIZATION;
D O I
10.1016/j.artint.2024.104184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Meta-learning has arisen as a powerful tool for many machine learning problems. With multiple factors to be considered when designing learning models for real-world applications, meta- learning with multiple objectives has attracted much attention recently. However, existing works either linearly combine multiple objectives into one objective or adopt evolutionary algorithms to handle it, where the former approach needs to pay high computational cost to tune the combination coefficients while the latter approach is computationally heavy and incapable to be integrated into gradient-based optimization. To alleviate those limitations, in this paper, we aim to propose a generic gradient-based Multi-Objective Meta-Learning (MOML) framework with applications in many machine learning problems. Specifically, the MOML framework formulates the objective function of meta-learning with multiple objectives as a Multi-Objective Bi-Level optimization Problem (MOBLP) where the upper-level subproblem is to solve several possibly conflicting objectives for the meta-learner. Different from those existing works, in this paper, we propose a gradient-based algorithm to solve the MOBLP. Specifically, we devise the first gradient-based optimization algorithm by alternately solving the lower-level and upper-level subproblems via the gradient descent method and the gradient-based multi-objective optimization method, respectively. Theoretically, we prove the convergence property and provide a non- asymptotic analysis of the proposed gradient-based optimization algorithm. Empirically, extensive experiments justify our theoretical results and demonstrate the superiority of the proposed MOML framework for different learning problems, including few-shot learning, domain adaptation, multitask learning, neural architecture search, and reinforcement learning. The source code of MOML is available at https://github .com /Baijiong -Lin /MOML.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Multi-objective learning control for robotic manipulator
    Win, KKK
    Cheah, CC
    JOURNAL OF ROBOTIC SYSTEMS, 2004, 21 (10): : 539 - 557
  • [42] Fuzzy Multi-objective Sparse Feature Learning
    Li, Na
    Lei, Yu
    Shi, Jiao
    Gong, Maoguo
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 466 - 473
  • [43] Federated Learning Meets Multi-Objective Optimization
    Hu, Zeou
    Shaloudegi, Kiarash
    Zhang, Guojun
    Yu, Yaoliang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (04): : 2039 - 2051
  • [44] Multi-objective firefly algorithm with hierarchical learning
    Lv, Li
    Zhou, Xiao-Dong
    Kang, Ping
    Fu, Xue-Feng
    Tian, Xiu-Mei
    Journal of Network Intelligence, 2021, 6 (03): : 411 - 427
  • [45] Multi-objective learning control for robotic manipulator
    Win, KKK
    Cheah, CC
    IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 1084 - 1089
  • [46] Multi-objective Reinforcement Learning for Responsive Grids
    Perez, Julien
    Germain-Renaud, Cecile
    Kegl, Balazs
    Loomis, Charles
    JOURNAL OF GRID COMPUTING, 2010, 8 (03) : 473 - 492
  • [47] Special issue on multi-objective reinforcement learning
    Drugan, Madalina
    Wiering, Marco
    Vamplew, Peter
    Chetty, Madhu
    NEUROCOMPUTING, 2017, 263 : 1 - 2
  • [48] Multi-Objective Self-Paced Learning
    Li, Hao
    Gong, Maoguo
    Meng, Deyu
    Miao, Qiguang
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1802 - 1808
  • [49] Multi-objective recognition based on deep learning
    Liu, Xin
    Wu, Junhui
    Man, Yiyun
    Xu, Xibao
    Guo, Jifeng
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2020, 92 (08): : 1185 - 1193
  • [50] A multi-objective deep reinforcement learning framework
    Thanh Thi Nguyen
    Ngoc Duy Nguyen
    Vamplew, Peter
    Nahavandi, Saeid
    Dazeley, Richard
    Lim, Chee Peng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 96