Effect of separator coating layer thickness on thermal and electrochemical properties of lithium-ion secondary batteries

被引:0
|
作者
Jung, Min-Gi [1 ]
Oh, Ji-Hui [2 ,3 ]
Hyun, Da-Eun [2 ]
Kim, Yong-Nam [2 ]
Han, Joo-Young [3 ]
Shin, Weon Ho [3 ]
Jeong, Kyoung-Hoon [4 ]
Lee, Dong-Won [2 ]
Kim, Sunghoon [5 ]
Oh, Jong-Min [3 ]
机构
[1] Hanyang Univ, Dept Mat Sci & Chem Engn, Ansan 15588, South Korea
[2] Korea Testing Lab, Mat Technol Ctr, Seoul 08389, South Korea
[3] Kwangwoon Univ, Dept Elect Mat Engn, Seoul 01897, South Korea
[4] Daehan Ceram Co Ltd, Tech Dept, Seoul 58452, South Korea
[5] Dong Eui Univ, Ctr Brain Busan Plus Program 21, Dept Appl Chem, Pusan 47227, South Korea
基金
新加坡国家研究基金会;
关键词
alpha-alumina; Thickness; Ceramic coated separator; Thermal stability; Lithium-ion battery; CERAMIC-COATED SEPARATORS; POLYETHYLENE SEPARATORS; CYCLING PERFORMANCE; PARTICLES; ENHANCEMENT; PENETRATION;
D O I
10.1007/s43207-024-00422-9
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study addresses the critical gap in understanding the quantitative relationship between the thickness of ceramic coatings on separators and the overall performance of lithium-ion batteries (LIBs). Through a comprehensive investigation into the effects of varying alumina coating thicknesses on polyethylene (PE) separators, we have elucidated the impact of single-sided and double-sided coatings on separator characteristics and, consequently, on cell performance. Our findings demonstrate that increasing the thickness of the single-sided alumina coating up to 4 mu m markedly enhances the mechanical and thermal stability of the separators. Also, we showed the superior thermal stability and electrochemical performance of 2 mu m double-sided coating layer compared to 4 mu m single-sided coating layer. Utilizing scanning electron microscopy, 3D shape analysis, and a suite of mechanical and electrochemical evaluations, we have detailed the positive ramifications of the alumina coating process. This study not only establishes a clear correlation between alumina coating thickness and separator performance but also advocates for an optimal double-side 2 mu m alumina coating. Such a configuration promises to advance the energy density and safety of LIBs, offering insights for future battery development and separator optimization.
引用
收藏
页码:1112 / 1122
页数:11
相关论文
共 50 条
  • [21] Separator technologies for lithium-ion batteries
    Huang, Xiaosong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (04) : 649 - 662
  • [22] Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition
    Im, Jinsol
    Ahn, Jinhyeok
    Kim, Jungmin
    Sung, Shi-Joon
    Cho, Kuk Young
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2019, 22 (02): : 60 - 68
  • [23] Coating of Heat-resistant Polymeric Layer to Enhance Thermal Stability of Microporous Polyethylene Separator for Lithium-ion Secondary Battery
    Sung, Jungmoon
    Park, Junyoung
    Jung, Hyun Wook
    POLYMER-KOREA, 2021, 45 (03) : 456 - 463
  • [24] The Role of Separator Thermal Stability in Safety Characteristics of Lithium-ion Batteries
    Zhou, Hanwei
    Fear, Conner
    Parekh, Mihit
    Gray, Frederick
    Fleetwood, James
    Adams, Thomas
    Tomar, Vikas
    Pol, Vilas G.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (09)
  • [25] The advanced copper oxide coating separator enhances the electrochemical performance of high-rate lithium-ion batteries
    Yuan, Yajie
    Li, Yin
    Hu, Junxian
    Zhang, Keyu
    Zhang, Shaoze
    Yang, Bin
    Yao, Yaochun
    JOURNAL OF POWER SOURCES, 2024, 623
  • [26] Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries
    Alkhedher, Mohammad
    Al Tahhan, Aghyad B.
    Yousaf, Jawad
    Ghazal, Mohammed
    Shahbazian-Yassar, Reza
    Ramadan, Mohamad
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [27] Effect of carbon coating on the electrochemical performance of graphite as an anode material for lithium-ion batteries
    Wang, HY
    Yoshio, M
    Fukuda, K
    Adachi, Y
    LITHIUM BATTERIES, PROCEEDINGS, 2000, 99 (25): : 55 - 72
  • [28] Understanding the effect of coating-drying operating variables on electrode physical and electrochemical properties of lithium-ion batteries
    Roman-Ramirez, L. A.
    Apachitei, G.
    Faraji-Niri, M.
    Lain, M.
    Widanage, W. D.
    Marco, J.
    JOURNAL OF POWER SOURCES, 2021, 516
  • [29] Thermostable and nonflammable polyimide/zirconia compound separator for lithium-ion batteries with superior electrochemical and safe properties
    Li, Xiaogang
    Liu, Kefan
    Yan, Yue
    Yu, Junfeng
    Dong, Nanxi
    Liu, Bingxue
    Tian, Guofeng
    Qi, Shengli
    Wu, Dezhen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 625 : 936 - 945
  • [30] Inorganic Layer Coated Polyolefin Separator with High Performances for Lithium-ion Batteries
    Zhao Li-Li
    Zhu Yong-Ping
    Wang Xue-Ying
    JOURNAL OF INORGANIC MATERIALS, 2013, 28 (12) : 1296 - 1300