Symplectic geometry;
symplectomorphism group;
fundamental group;
Hamiltonian circle actions;
SYMPLECTOMORPHISM GROUPS;
COMPLEX STRUCTURES;
CLASSIFICATION;
CURVATURE;
TOPOLOGY;
D O I:
10.1090/tran/9223
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let M = (M, omega) be either S-2 x S-2 or CP2#(CP2) over bar endowed with any symplectic form omega. Suppose a finite cyclic group Z(n) is acting effectively on (M, omega) through Hamiltonian diffeomorphisms, that is, there is an injective homomorphism Z(n) -> Ham(M, omega). In this paper, we investigate the homotopy type of the group Symp(Zn) (M, omega) of equivariant symplectomorphisms. We prove that for some infinite families of Z(n) actions satisfying certain inequalities involving the order n and the symplectic cohomology class [omega], the actions extend to either one or two toric actions, and accordingly, that the centralizers are homotopically equivalent to either a finite dimensional Lie group, or to the homotopy pushout of two tori along a circle. Our results rely on J-holomorphic techniques, on Delzant's classification of toric actions, on Karshon's classification of Hamiltonian circle actions on 4-manifolds, and on the Chen-Wilczynski classification of smooth Z(n)-actions on Hirzebruch surfaces.
机构:
Univ Nacl Educ Distancia, Fac Ciencias, Dep Matemat Fundamentales, Madrid 28040, SpainUniv Nacl Educ Distancia, Fac Ciencias, Dep Matemat Fundamentales, Madrid 28040, Spain
Bujalance, E.
Cirre, F. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Educ Distancia, Fac Ciencias, Dep Matemat Fundamentales, Madrid 28040, SpainUniv Nacl Educ Distancia, Fac Ciencias, Dep Matemat Fundamentales, Madrid 28040, Spain
Cirre, F. J.
Conder, M. D. E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Auckland, Dept Math, Auckland 1142, New ZealandUniv Nacl Educ Distancia, Fac Ciencias, Dep Matemat Fundamentales, Madrid 28040, Spain
Conder, M. D. E.
Szepietowski, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gdansk, Inst Math, PL-80952 Gdansk, PolandUniv Nacl Educ Distancia, Fac Ciencias, Dep Matemat Fundamentales, Madrid 28040, Spain
机构:
Scuola Int Super Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, ItalyScuola Int Super Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, Italy
Gallet, Matteo
Lubbes, Niels
论文数: 0引用数: 0
h-index: 0
机构:
Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, Vienna, AustriaScuola Int Super Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, Italy
Lubbes, Niels
Schicho, Josef
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Kepler Univ Linz, Res Inst Symbol Computat RISC, Linz, AustriaScuola Int Super Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, Italy
Schicho, Josef
Vrsek, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Univ West Bohemia, Fac Sci Appl, Plzen, Czech RepublicScuola Int Super Studi Avanzati SISSA, Via Bonomea 265, I-34136 Trieste, Italy