ROBUST RANK CANONICAL CORRELATION ANALYSIS FOR MULTIVARIATE SURVIVAL DATA

被引:0
|
作者
He, Di [1 ]
Zhou, Yong [2 ,3 ]
Zou, Hui [4 ]
机构
[1] Nanjing Univ, Sch Econ, Nanjing 210046, Peoples R China
[2] East China Normal Univ, Key Lab Adv Theory & Applicat Stat & Data Sci, MOE, Shanghai 200062, Peoples R China
[3] East China Normal Univ, Applicat Stat & Data Sci, Shanghai 200062, Peoples R China
[4] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Canonical correlation analysis; inverse probability of censoring weighting; Kendall's tau correlation; right-censoring; CENSORED-DATA; INDEPENDENCE;
D O I
10.5705/ss.202022.0069
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Canonical correlation analysis (CCA) is widely applied in statistical analysis of multivariate data to find associations between two sets of multidimensional variables. However, we often cannot use CCA directly for survival data or their monotone transformations, owing to right-censoring in the data. In this paper, we propose a new robust rank CCA (RRCCA) method based on Kendall's tau correlation, and adjust it to deal with multivariate survival data, without requiring any model assumptions. Owing to the nature of rank correlation, the RRCCA is invariant against monotone transformations of the data. We establish the estimation consistency of the RRCCA approach under weak conditions. Simulation studies demonstrate the superior performance of the RRCCA in terms of estimation accuracy and empirical power. Lastly, we demonstrate the proposed method by applying it to Stanford heart transplant data.
引用
收藏
页码:1699 / 1721
页数:23
相关论文
共 50 条
  • [21] Robust correlation structure for multivariate failure time data
    Hasan, M. Tariqul
    Sneddon, Gary
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (09) : 1839 - 1854
  • [22] Robust methods for multivariate data analysis
    Moller, S. Frosch
    von Frese, J.
    Bro, R.
    JOURNAL OF CHEMOMETRICS, 2005, 19 (10) : 549 - 563
  • [23] Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis
    Iaci, Ross
    Sriram, T. N.
    Yin, Xiangrong
    BIOMETRICS, 2010, 66 (04) : 1107 - 1118
  • [24] Symmetrical robust canonical correlation analysis for image classification
    Wang, Wenjing
    Lu, Yuwu
    Lai, Zhihui
    AATCC Journal of Research, 2021, 8 (Special Issue 1) : 54 - 61
  • [25] Symmetrical Robust Canonical Correlation Analysis for Image Classification
    Wang, Wenjing
    Lu, Yuwu
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL): : 55 - 62
  • [26] Robust sieve estimators for functional canonical correlation analysis
    Alvarez, Agustin
    Boente, Graciela
    Kudraszow, Nadia
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 46 - 62
  • [27] A robust RLS algorithm for adaptive Canonical Correlation Analysis
    Vía, J
    Santamaría, I
    Pérez, J
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 365 - 368
  • [29] AN APPLICATION OF FACTOR AND CANONICAL-ANALYSIS TO MULTIVARIATE DATA
    DAS, RS
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1965, 18 (01): : 57 - 67
  • [30] Correlation Analysis for Multivariate Functional Data
    Gorecki, Tomasz
    Krzysko, Miroslaw
    Wolynski, Waldemar
    DATA SCIENCE: INNOVATIVE DEVELOPMENTS IN DATA ANALYSIS AND CLUSTERING, 2017, : 243 - 258