ROBUST RANK CANONICAL CORRELATION ANALYSIS FOR MULTIVARIATE SURVIVAL DATA

被引:0
|
作者
He, Di [1 ]
Zhou, Yong [2 ,3 ]
Zou, Hui [4 ]
机构
[1] Nanjing Univ, Sch Econ, Nanjing 210046, Peoples R China
[2] East China Normal Univ, Key Lab Adv Theory & Applicat Stat & Data Sci, MOE, Shanghai 200062, Peoples R China
[3] East China Normal Univ, Applicat Stat & Data Sci, Shanghai 200062, Peoples R China
[4] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Canonical correlation analysis; inverse probability of censoring weighting; Kendall's tau correlation; right-censoring; CENSORED-DATA; INDEPENDENCE;
D O I
10.5705/ss.202022.0069
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Canonical correlation analysis (CCA) is widely applied in statistical analysis of multivariate data to find associations between two sets of multidimensional variables. However, we often cannot use CCA directly for survival data or their monotone transformations, owing to right-censoring in the data. In this paper, we propose a new robust rank CCA (RRCCA) method based on Kendall's tau correlation, and adjust it to deal with multivariate survival data, without requiring any model assumptions. Owing to the nature of rank correlation, the RRCCA is invariant against monotone transformations of the data. We establish the estimation consistency of the RRCCA approach under weak conditions. Simulation studies demonstrate the superior performance of the RRCCA in terms of estimation accuracy and empirical power. Lastly, we demonstrate the proposed method by applying it to Stanford heart transplant data.
引用
收藏
页码:1699 / 1721
页数:23
相关论文
共 50 条
  • [1] Robust estimation in canonical correlation analysis for multivariate functional data
    Krzysko, Miroslaw
    Smaga, Lukasz
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 521 - 535
  • [2] ROBUST SMOOTHED CANONICAL CORRELATION ANALYSIS FOR FUNCTIONAL DATA
    Boente, Graciela
    Kudraszow, Nadia L.
    STATISTICA SINICA, 2022, 32 (03) : 1269 - 1293
  • [3] Multivariate group-level analysis for task fMRI data with canonical correlation analysis
    Zhuang, Xiaowei
    Yang, Zhengshi
    Sreenivasan, Karthik R.
    Mishra, Virendra R.
    Curran, Tim
    Nandy, Rajesh
    Cordes, Dietmar
    NEUROIMAGE, 2019, 194 : 25 - 41
  • [4] A robust method for canonical correlation analysis
    Sajesh, T. A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [5] Robust generalized canonical correlation analysis
    He Yan
    Li Cheng
    Qiaolin Ye
    Dong-Jun Yu
    Yong Qi
    Applied Intelligence, 2023, 53 : 21140 - 21155
  • [6] Robust methods for canonical correlation analysis
    Dehon, C
    Filzmoser, P
    Croux, C
    DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 321 - 326
  • [7] Robust generalized canonical correlation analysis
    Yan, He
    Cheng, Li
    Ye, Qiaolin
    Yu, Dong-Jun
    Qi, Yong
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21140 - 21155
  • [8] Robust sparse canonical correlation analysis
    Wilms, Ines
    Croux, Christophe
    BMC SYSTEMS BIOLOGY, 2016, 10
  • [9] Conditional test for rank in bivariate canonical correlation analysis
    Nielsen, B
    BIOMETRIKA, 2001, 88 (03) : 874 - 880
  • [10] Information criteria for reduced rank canonical correlation analysis
    Hasan, MA
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2215 - 2220