Latent thermal energy storage using solid-state phase transformation in caloric materials

被引:1
|
作者
Ahcin, Ziga [1 ]
Kitanovski, Andrej [1 ]
Tusek, Jaka [1 ]
机构
[1] Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 09期
关键词
HEAT; PERFORMANCE; REGENERATOR;
D O I
10.1016/j.xcrp.2024.102175
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to- solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Phase Stability and Transformation of Energy Storage Materials
    Liang, Song-Mao
    Ouyang, Bin
    Lin, Shih-kang
    Seifert, Hans J.
    JOM, 2022, 74 (12) : 4652 - 4653
  • [42] Phase Stability and Transformation of Energy Storage Materials
    Song-Mao Liang
    Bin Ouyang
    Shih-kang Lin
    Hans J. Seifert
    JOM, 2022, 74 : 4652 - 4653
  • [43] Thermal Rectification via Heterojunctions of Solid-State Phase-Change Materials
    Kang, Hyungmook
    Yang, Fan
    Urban, Jeffrey J.
    PHYSICAL REVIEW APPLIED, 2018, 10 (02):
  • [44] Thermal behavior of latent thermal energy storage unit using two phase change materials: Effects of HTF inlet temperature
    Benmoussa, Fouzi
    Benzaoui, Ahmed
    Benmoussa, Hocine
    CASE STUDIES IN THERMAL ENGINEERING, 2017, 10 : 475 - 483
  • [45] Heat capacities of "Plastic crystal" solid state thermal energy storage materials
    Chandra, D
    Chien, WM
    Gandikotta, V
    Lindle, DW
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2002, 216 (12): : 1433 - 1444
  • [46] Hydrogen Storage in Nickel Based Solid-State Materials
    Zvyagintseva, A., V
    Samofalova, A. S.
    VII INTERNATIONAL YOUNG RESEARCHERS' CONFERENCE - PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020), 2020, 2313
  • [47] Further characterisation of solid-state ammonia storage materials
    Jones, Martin
    David, Bill
    Porch, Adrian
    Barter, Michael
    Hartley, Jon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [48] High-throughput thermodynamic computation and experimental study of solid-state phase transitions in organic multicomponent orientationally disordered phase change materials for thermal energy storage
    Shi, Renhai
    Chandra, Dhanesh
    Chien, Wen-Ming
    Wang, Jingjing
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2019, 64 : 66 - 77
  • [49] Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review
    Lee, Seul-Yi
    Lee, Jong-Hoon
    Kim, Yeong-Hun
    Kim, Jong-Woo
    Lee, Kyu-Jae
    Park, Soo-Jin
    PROCESSES, 2022, 10 (02)
  • [50] THERMAL DESIGN AND ANALYSIS OF A SOLID-STATE GRID-TIED THERMAL ENERGY STORAGE FOR HYBRID COMPRESSED AIR ENERGY STORAGE SYSTEMS
    Hakamian, Khashayar
    Anderson, Kevin R.
    Shafahi, Maryam
    Lakeh, Reza Baghaei
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2018, 2018,