Latent thermal energy storage using solid-state phase transformation in caloric materials

被引:1
|
作者
Ahcin, Ziga [1 ]
Kitanovski, Andrej [1 ]
Tusek, Jaka [1 ]
机构
[1] Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 09期
关键词
HEAT; PERFORMANCE; REGENERATOR;
D O I
10.1016/j.xcrp.2024.102175
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to- solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] SOLID-STATE PHASE-CHANGE MATERIALS FOR THERMAL-ENERGY STORAGE
    BENSON, DK
    CHANDRA, D
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (08) : C360 - C360
  • [2] Solid-state cooling with caloric materials
    Takeuchi, Ichiro
    Sandeman, Karl
    PHYSICS TODAY, 2015, 68 (12) : 48 - 54
  • [3] Solid-State Reactions for the Storage of Thermal Energy
    Doppiu, Stefania
    Dauvergne, Jean-Luc
    Palomo del Barrio, Elena
    NANOMATERIALS, 2019, 9 (02)
  • [4] Solid-state thermal energy storage using reversible martensitic transformations
    Sharar, Darin J.
    Donovan, Brian F.
    Warzoha, Ronald J.
    Wilson, Adam A.
    Leff, Asher C.
    Hanrahan, Brendan M.
    APPLIED PHYSICS LETTERS, 2019, 114 (14)
  • [5] Latent heat thermal storage of solid-state phase transition in thermally stabilized hexagonal FeS
    Wang, Xuelian
    Zhang, Xuekai
    Tong, Peng
    Yang, Cheng
    Si, Jianguo
    Xiong, Tingjiao
    Dong, Buke
    Xie, Lulu
    Pan, Chengbing
    Wang, Meng
    Lin, Jianchao
    Chen, Huaican
    Yin, Wen
    Song, Wenhai
    Sun, Yuping
    SCRIPTA MATERIALIA, 2023, 225
  • [6] Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator
    Aprea, C.
    Greco, A.
    Maiorino, A.
    Masselli, C.
    ENERGY, 2018, 165 : 439 - 455
  • [7] AN EXPERIMENTAL INVESTIGATION OF SOLID-STATE PHASE-CHANGE MATERIALS FOR SOLAR THERMAL STORAGE
    SON, CH
    MOREHOUSE, JH
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1991, 113 (04): : 244 - 249
  • [8] Thermodynamic assessment of binary solid-state thermal storage materials
    Chandra, D
    Chellappa, R
    Chien, WM
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (2-4) : 235 - 240
  • [9] In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage
    Yang, Bo
    Liu, Yang
    Ye, Wenjie
    Wang, Qiyang
    Yang, Xiao
    Yang, Dongmei
    MATERIALS, 2021, 14 (20)
  • [10] Energy Storage Materials for Solid-State Batteries: Design by Mechanochemistry
    Schlem, Roman
    Burmeister, Christine Friederike
    Michalowski, Peter
    Ohno, Saneyuki
    Dewald, Georg F.
    Kwade, Arno
    Zeier, Wolfgang G.
    ADVANCED ENERGY MATERIALS, 2021, 11 (30)