Nonsmooth projection-free optimization with functional constraints

被引:0
|
作者
Asgari, Kamiar [1 ]
Neely, Michael J. [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
基金
美国国家科学基金会;
关键词
Projection-free optimization; Frank-Wolfe method; Nonsmooth convex optimization; Stochastic optimization; Functional constraints; FRANK-WOLFE ALGORITHM; CONVEX-OPTIMIZATION; GRADIENT METHODS; MINIMIZATION; CONVERGENCE; EXTENSION;
D O I
10.1007/s10589-024-00607-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a subgradient-based algorithm for constrained nonsmooth convex optimization that does not require projections onto the feasible set. While the well-established Frank-Wolfe algorithm and its variants already avoid projections, they are primarily designed for smooth objective functions. In contrast, our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints. It achieves an & varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-suboptimal solution in O(& varepsilon;-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\epsilon <^>{-2})$$\end{document} iterations, with each iteration requiring only a single (potentially inexact) Linear Minimization Oracle call and a (possibly inexact) subgradient computation. This performance is consistent with existing lower bounds. Similar performance is observed when deterministic subgradients are replaced with stochastic subgradients. In the special case where there are no functional inequality constraints, our algorithm competes favorably with a recent nonsmooth projection-free method designed for constraint-free problems. Our approach utilizes a simple separation scheme in conjunction with a new Lagrange multiplier update rule.
引用
收藏
页码:927 / 975
页数:49
相关论文
共 50 条
  • [31] New Projection-free Algorithms for Online Convex Optimization with Adaptive Regret Guarantees
    Garber, Dan
    Kretzu, Ben
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178
  • [32] Projection-free Online Learning in Dynamic Environments
    Wan, Yuanyu
    Xue, Bo
    Zhang, Lijun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10067 - 10075
  • [33] Projection-free Distributed Online Learning in Networks
    Zhang, Wenpeng
    Zhao, Peilin
    Zhu, Wenwu
    Hoi, Steven C. H.
    Zhang, Tong
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [34] Projection-Free Distributed Optimization With Nonconvex Local Objective Functions and Resource Allocation Constraint
    Li, Dewen
    Li, Ning
    Lewis, Frank
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (01): : 413 - 422
  • [35] Projection-free Adaptive Regret with Membership Oracles
    Lu, Zhou
    Brukhim, Nataly
    Gradu, Paula
    Hazan, Elad
    INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 201, 2023, 201 : 1055 - 1073
  • [36] Structured Projection-free Online Convex Optimization with Multi-point Bandit Feedback
    Ding, Yuhao
    Lavaei, Javad
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 954 - 961
  • [37] Frank–Wolfe and friends: a journey into projection-free first-order optimization methods
    Immanuel M. Bomze
    Francesco Rinaldi
    Damiano Zeffiro
    4OR, 2021, 19 : 313 - 345
  • [38] Accelerated Stochastic Gradient-free and Projection-free Methods
    Huang, Feihu
    Tao, Lue
    Chen, Songcan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [39] Projection-Free Methods for Stochastic Simple Bilevel Optimization with Convex Lower-level Problem
    Cao, Jincheng
    Jiang, Ruichen
    Abolfazli, Nazanin
    Hamedani, Erfan Yazdandoost
    Mokhtari, Aryan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [40] Frank-Wolfe and friends: a journey into projection-free first-order optimization methods
    Bomze, Immanuel M.
    Rinaldi, Francesco
    Zeffiro, Damiano
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2021, 19 (03): : 313 - 345