Nonsmooth projection-free optimization with functional constraints

被引:0
|
作者
Asgari, Kamiar [1 ]
Neely, Michael J. [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
基金
美国国家科学基金会;
关键词
Projection-free optimization; Frank-Wolfe method; Nonsmooth convex optimization; Stochastic optimization; Functional constraints; FRANK-WOLFE ALGORITHM; CONVEX-OPTIMIZATION; GRADIENT METHODS; MINIMIZATION; CONVERGENCE; EXTENSION;
D O I
10.1007/s10589-024-00607-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a subgradient-based algorithm for constrained nonsmooth convex optimization that does not require projections onto the feasible set. While the well-established Frank-Wolfe algorithm and its variants already avoid projections, they are primarily designed for smooth objective functions. In contrast, our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints. It achieves an & varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-suboptimal solution in O(& varepsilon;-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\epsilon <^>{-2})$$\end{document} iterations, with each iteration requiring only a single (potentially inexact) Linear Minimization Oracle call and a (possibly inexact) subgradient computation. This performance is consistent with existing lower bounds. Similar performance is observed when deterministic subgradients are replaced with stochastic subgradients. In the special case where there are no functional inequality constraints, our algorithm competes favorably with a recent nonsmooth projection-free method designed for constraint-free problems. Our approach utilizes a simple separation scheme in conjunction with a new Lagrange multiplier update rule.
引用
收藏
页码:927 / 975
页数:49
相关论文
共 50 条
  • [1] Projection-Free Bandit Optimization with Privacy Guarantees
    Ene, Alina
    Nguyen, Huy L.
    Vladu, Adrian
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7322 - 7330
  • [2] Projection-Free Bandit Convex Optimization
    Chen, Lin
    Zhang, Mingrui
    Karbasi, Amin
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [3] Projection-Free Optimization on Uniformly Convex Sets
    Kerdreux, Thomas
    d'Aspremont, Alexandre
    Pokutta, Sebastian
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 19 - +
  • [4] Projection-free accelerated method for convex optimization
    Gonçalves, Max L. N.
    Melo, Jefferson G.
    Monteiro, Renato D. C.
    Optimization Methods and Software, 2022, 37 (01) : 214 - 240
  • [5] Projection-free accelerated method for convex optimization
    Goncalves, Max L. N.
    Melo, Jefferson G.
    Monteiro, Renato D. C.
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (01): : 214 - 240
  • [6] Projection-free nonconvex stochastic optimization on Riemannian manifolds
    Weber, Melanie
    Sra, Suvrit
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3241 - 3271
  • [7] Quantized Distributed Online Projection-Free Convex Optimization
    Zhang, Wentao
    Shi, Yang
    Zhang, Baoyong
    Lu, Kaihong
    Yuan, Deming
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1837 - 1842
  • [8] Distributed Stochastic Projection-Free Algorithm for Constrained Optimization
    Jiang, Xia
    Zeng, Xianlin
    Xie, Lihua
    Sun, Jian
    Chen, Jie
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (04) : 2479 - 2494
  • [9] Distributed projection-free algorithm for constrained aggregative optimization
    Wang, Tongyu
    Yi, Peng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (10) : 5273 - 5288
  • [10] Projection-Free Stochastic Bi-Level Optimization
    Akhtar, Zeeshan
    Bedi, Amrit Singh
    Thomdapu, Srujan Teja
    Rajawat, Ketan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 6332 - 6347