Towards Achieving Asynchronous MPC with Linear Communication and Optimal Resilience

被引:0
|
作者
Goyal, Vipul [1 ,2 ]
Liu-Zhang, Chen-Da [3 ,4 ]
Song, Yifan [5 ,6 ]
机构
[1] NTT Res, Sunnyvale, CA 94085 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Lucerne Univ Appl Sci & Arts, Luzern, Switzerland
[4] Web3 Fdn, Luzern, Switzerland
[5] Tsinghua Univ, Beijing, Peoples R China
[6] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
来源
ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT VIII | 2024年 / 14927卷
基金
中国国家自然科学基金;
关键词
MULTIPARTY COMPUTATION; SECURE;
D O I
10.1007/978-3-031-68397-8_6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Secure multi-party computation (MPC) allows a set of n parties to jointly compute a function over their private inputs. The seminal works of Ben-Or, Canetti and Goldreich [STOC '93] and Ben-Or, Kelmer and Rabin [PODC '94] settled the feasibility of MPC over asynchronous networks. Despite the significant line of work devoted to improving the communication complexity, current protocols with information-theoretic security and optimal resilience t < n/3 communicate O(n(4)C) field elements for a circuit with C multiplication gates. In contrast, synchronous MPC protocols with Omega(nC) communication have long been known. In this work we make progress towards closing this gap. We provide a novel MPC protocol in the asynchronous setting with statistical security that makes black-box use of an asynchronous complete secret-sharing (ACSS) protocol. The cost per multiplication reduces to the cost of distributing a constant number of sharings via ACSS, improving a linear factor over the state of the art by Choudhury and Patra [IEEE Trans. Inf. Theory '17]. With a recent concurrent work achieving ACSS with linear cost per sharing, we achieve an MPC with O(nC) communication.
引用
收藏
页码:170 / 206
页数:37
相关论文
共 50 条
  • [21] Optimal MPC for tracking of constrained linear systems
    Ferramosca, A.
    Limon, D.
    Alvarado, I.
    Alamo, T.
    Castano, F.
    Camacho, E. F.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (08) : 1265 - 1276
  • [22] Towards Encrypted MPC for Linear Constrained Systems
    Darup, Moritz Schulze
    Redder, Adrian
    Shames, Iman
    Farokhi, Farhad
    Quevedo, Daniel
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (02): : 195 - 200
  • [23] Optimal asynchronous linear-pipelines
    Yahya, Eslam
    Renaudin, Marc
    PRIME: 2008 PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS, PROCEEDINGS, 2008, : 9 - 12
  • [24] HoneyBadgerMPC and AsynchroMix: Practical Asynchronous MPC and its Application to Anonymous Communication
    Lu, Donghang
    Yurek, Thomas
    Kulshreshtha, Samarth
    Govind, Rahul
    Kate, Aniket
    Miller, Andrew
    PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), 2019, : 887 - 903
  • [25] Simple and Efficient Asynchronous Byzantine Agreement with Optimal Resilience
    Patra, Arpita
    Choudhary, Ashish
    Rangan, C. Pandu
    PODC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2009, : 92 - 101
  • [26] Revisiting asynchronous fault tolerant computation with optimal resilience
    Abraham, Ittai
    Dolev, Danny
    Stern, Gilad
    DISTRIBUTED COMPUTING, 2022, 35 (04) : 333 - 355
  • [27] Lightweight Asynchronous Verifiable Secret Sharing with Optimal Resilience
    Shoup, Victor
    Smart, Nigel P.
    JOURNAL OF CRYPTOLOGY, 2024, 37 (03)
  • [28] Revisiting asynchronous fault tolerant computation with optimal resilience
    Ittai Abraham
    Danny Dolev
    Gilad Stern
    Distributed Computing, 2022, 35 : 333 - 355
  • [29] Optimal Control via Asynchronous Communication Channels
    A. S. Matveev
    A. V. Savkin
    Journal of Optimization Theory and Applications, 2004, 122 : 539 - 572
  • [30] Optimal control via asynchronous communication channels
    Matveev, AS
    Savkin, AV
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (03) : 539 - 572