Some properties of solutions to the integrable Camassa-Holm type equation

被引:0
|
作者
Zhu, Mingxuan [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Peoples R China
关键词
Camassa-Holm type equation; Propagation speed; Long time behavior; WELL-POSEDNESS; MODEL;
D O I
10.1016/j.aml.2024.109247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an integrable Camassa-Holm type equation. We proved that if the initial datum u(0)equivalent to 0 is compactly supported in[a,c]; then the corresponding solution to the Camassa-Holm type equation has the following property: u(x,t) ={0, x> q(c,t); {l(t)e(x), x< q(a,t). Furthermore, l(t)<0is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.
引用
收藏
页数:4
相关论文
共 50 条