Some properties of solutions to the integrable Camassa-Holm type equation

被引:0
|
作者
Zhu, Mingxuan [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Peoples R China
关键词
Camassa-Holm type equation; Propagation speed; Long time behavior; WELL-POSEDNESS; MODEL;
D O I
10.1016/j.aml.2024.109247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an integrable Camassa-Holm type equation. We proved that if the initial datum u(0)equivalent to 0 is compactly supported in[a,c]; then the corresponding solution to the Camassa-Holm type equation has the following property: u(x,t) ={0, x> q(c,t); {l(t)e(x), x< q(a,t). Furthermore, l(t)<0is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] The peakon solutions of a new integrable Camassa-Holm equation
    Dong, Min-Jie
    Wang, Yun
    Tian, Li-Xin
    Wei, Jing-Dong
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [2] On an integrable Camassa-Holm type equation with cubic nonlinearity
    Guo, Zhengguang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 34 : 225 - 232
  • [3] An Integrable Matrix Camassa-Holm Equation
    Chan, Li-Feng
    Xia, Bao-Qiang
    Zhou, Ru-Guang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (12) : 1399 - 1404
  • [4] On the integrable perturbations of the Camassa-Holm equation
    Kraenkel, RA
    Senthilvelan, M
    Zenchuk, AI
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3160 - 3169
  • [5] An Integrable Matrix Camassa-Holm Equation
    产丽凤
    夏保强
    周汝光
    Communications in Theoretical Physics, 2019, 71 (12) : 1399 - 1404
  • [6] On solutions of the Camassa-Holm equation
    Johnson, RS
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2035): : 1687 - 1708
  • [7] Integrable generalization of the associated Camassa-Holm equation
    Luo, Lin
    Qiao, Zhijun
    Lopez, Juan
    PHYSICS LETTERS A, 2014, 378 (09) : 677 - 683
  • [8] On the blow-up of solutions to the integrable modified Camassa-Holm equation
    Liu, Yue
    Olver, Peter J.
    Qu, Changzheng
    Zhang, Shuanghu
    ANALYSIS AND APPLICATIONS, 2014, 12 (04) : 355 - 368
  • [9] Some properties for the fifth-order Camassa-Holm type equation
    Zhang, Qingning
    Li, Li
    Jiang, Zaihong
    Lu, Qing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 5266 - 5285
  • [10] DISSIPATIVE SOLUTIONS FOR THE CAMASSA-HOLM EQUATION
    Holden, Helge
    Raynaud, Xavier
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) : 1047 - 1112