A non-homogeneous alternating renewal process model for interval censoring

被引:0
|
作者
van Lieshout, M. N. M. [1 ]
Markwitz, R. L. [2 ]
机构
[1] Ctr Wiskunde & Informat CWI, Stochast Res Grp, POB 94079, NL-1090 GB Amsterdam, Netherlands
[2] Univ Twente, Dept Appl Math, POB 217, NL-7500 AE Enschede, Netherlands
基金
荷兰研究理事会;
关键词
Alternating renewal process; inhomogeneity; interval-censoring; marked temporal point process; Markov point process; LIKELIHOOD INFERENCE;
D O I
10.1017/jpr.2024.54
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Previous approaches to modelling interval-censored data have often relied on assumptions of homogeneity in the sense that the censoring mechanism, the underlying distribution of occurrence times, or both, are assumed to be time-invariant. In this work, we introduce a model which allows for non-homogeneous behaviour in both cases. In particular, we outline a censoring mechanism based on a non-homogeneous alternating renewal process in which interval generation is assumed to be time-dependent, and we propose a Markov point process model for the underlying occurrence time distribution. We prove the existence of this process and derive the conditional distribution of the occurrence times given the intervals. We provide a framework within which the process can be accurately modelled, and subsequently compare our model to the homogeneous approach through a number of illustrative examples.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] STASTISTICS OF PARTICULAR NON-HOMOGENEOUS POISSON PROCESS
    WILLIS, DM
    BIOMETRIKA, 1964, 51 (3-4) : 399 - &
  • [22] Creep rupture as a non-homogeneous Poissonian process
    Danku, Zsuzsa
    Kun, Ferenc
    SCIENTIFIC REPORTS, 2013, 3
  • [23] Solutions for a diffusion process in non-homogeneous media
    Barrera, P
    Brugarino, T
    Pignato, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2001, 116 (08): : 951 - 957
  • [24] Creep rupture as a non-homogeneous Poissonian process
    Zsuzsa Danku
    Ferenc Kun
    Scientific Reports, 3
  • [25] Non-homogeneous Polya-Aeppli process
    Chukova, Stefanka
    Minkova, Leda D.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (10) : 2955 - 2967
  • [26] A NEW NON-PARAMETRIC NON-HOMOGENEOUS POISSON PROCESS SOFTWARE RELIABILITY MODEL
    Barghout, May
    ADVANCES AND APPLICATIONS IN STATISTICS, 2012, 29 (02) : 81 - 99
  • [27] Non-homogeneous Poisson and renewal processes as spatial models for cancer mutation
    Miao, Hengyuan
    Kuruoglu, Ercan Engin
    Xu, Tao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 106
  • [28] RENEWAL AGING IN NON-HOMOGENEOUS POISSON PROCESSES WITH PERIODIC RATE MODULATION
    Paradisi, Paolo
    Grigolini, Paolo
    Bianco, Simone
    Akin, Osman C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (09): : 2681 - 2691
  • [29] An alternating renewal process to model constellation availability
    Teo, K. H.
    Tai, K.
    Schena, V.
    Simonini, L.
    ADVANCES IN SPACE RESEARCH, 2021, 68 (09) : 3717 - 3730
  • [30] Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes
    Azais, Romain
    Dufour, Francois
    Gegout-Petit, Anne
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (04): : 1204 - 1231