Explainable AI (XAI) in Smart Grids for Predictive Maintenance: A survey

被引:0
|
作者
Onu, Peter [1 ]
Pradhan, Anup [1 ]
Madonsela, Nelson Sizwe [1 ]
机构
[1] Univ Johannesburg, Dept Qual & Operat Management, Johannesburg, South Africa
关键词
explainable AI; smart grid; predictive maintenance; challenges; and opportunities;
D O I
10.1109/SESAI61023.2024.10599403
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The dynamic trend of modern energy infrastructure demands proactive and transparent solutions, especially in predictive maintenance for smart grids. This research discusses the integration of Explainable AI ( XAI) to augment the reliability and trustworthiness of predictive maintenance strategies within smart grids. As such, the present study explores how XAI can be better understood based on predictive maintenance procedures and delignates the factors influencing maintenance decisions. In addition, the paper highlights the implications of two XAI techniques (LIME and SHAP) and then surveys recent literature on the subject matter. The authors are optimistic that this paper will spark a new turn towards, as per stakeholders' commitment to enhance the operational efficiency of energy infrastructure with emphasis on the decision-making processes that drive these critical systems.
引用
收藏
页码:12 / 17
页数:6
相关论文
共 50 条
  • [31] Charting the Sociotechnical Gap in Explainable AI: A Framework to Address the Gap in XAI
    Ehsan U.
    Saha K.
    De Choudhury M.
    Riedl M.O.
    Proceedings of the ACM on Human-Computer Interaction, 2023, 7 (1 CSCW)
  • [32] An Overview of the Empirical Evaluation of Explainable AI (XAI): A Comprehensive Guideline for User-Centered Evaluation in XAI
    Naveed, Sidra
    Stevens, Gunnar
    Robin-Kern, Dean
    Applied Sciences (Switzerland), 2024, 14 (23):
  • [33] Explainable AI for all - A roadmap for inclusive XAI for people with cognitive disabilities
    Tielman, Myrthe L.
    Suarez-Figueroa, Mari Carmen
    Jonsson, Arne
    Neerincx, Mark A.
    Siebert, Luciano Cavalcante
    TECHNOLOGY IN SOCIETY, 2024, 79
  • [34] Evaluating Explainable AI (XAI) in Terms of User Gender and Educational Background
    Reeder, Samuel
    Jensen, Joshua
    Ball, Robert
    ARTIFICIAL INTELLIGENCE IN HCI, AI-HCI 2023, PT I, 2023, 14050 : 286 - 304
  • [35] XAI Unveiled: Revealing the Potential of Explainable AI in Medicine: A Systematic Review
    Scarpato, Noemi
    Ferroni, Patrizia
    Guadagni, Fiorella
    IEEE ACCESS, 2024, 12 : 191498 - 191516
  • [36] Comparative Analysis of XAI(eXplainable AI) for Optimization of Wastewater Treatment Process
    Nahm, Eui-Seok
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (10): : 1711 - 1717
  • [37] EXPLAINABLE AI (XAI) IN BIOMEDICAL SIGNAL AND IMAGE PROCESSING: PROMISES AND CHALLENGES
    Yang, Guang
    Rao, Arvind
    Fernandez-Maloigne, Christine
    Calhoun, Vince
    Menegaz, Gloria
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1531 - 1535
  • [38] An efficient ensemble explainable AI (XAI) approach for morphed face detection
    Dwivedi, Rudresh
    Kothari, Pranay
    Chopra, Deepak
    Singh, Manjot
    Kumar, Ritesh
    PATTERN RECOGNITION LETTERS, 2024, 184 : 197 - 204
  • [39] Explainable AI (XAI) Applied in Machine Learning for Pain Modeling: A Review
    Madanu, Ravichandra
    Abbod, Maysam F.
    Hsiao, Fu-Jung
    Chen, Wei-Ta
    Shieh, Jiann-Shing
    TECHNOLOGIES, 2022, 10 (03)
  • [40] Reprint of: Explainable AI (XAI)-driven vibration sensing scheme for surface quality monitoring in a smart surface grinding process
    Hanchate, Abhishek
    Bukkapatnam, Satish T. S.
    Lee, Kye Hwan
    Srivastava, Anil
    Kumara, Soundar
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 100 : 64 - 74