Explainable AI (XAI) in Smart Grids for Predictive Maintenance: A survey

被引:0
|
作者
Onu, Peter [1 ]
Pradhan, Anup [1 ]
Madonsela, Nelson Sizwe [1 ]
机构
[1] Univ Johannesburg, Dept Qual & Operat Management, Johannesburg, South Africa
关键词
explainable AI; smart grid; predictive maintenance; challenges; and opportunities;
D O I
10.1109/SESAI61023.2024.10599403
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The dynamic trend of modern energy infrastructure demands proactive and transparent solutions, especially in predictive maintenance for smart grids. This research discusses the integration of Explainable AI ( XAI) to augment the reliability and trustworthiness of predictive maintenance strategies within smart grids. As such, the present study explores how XAI can be better understood based on predictive maintenance procedures and delignates the factors influencing maintenance decisions. In addition, the paper highlights the implications of two XAI techniques (LIME and SHAP) and then surveys recent literature on the subject matter. The authors are optimistic that this paper will spark a new turn towards, as per stakeholders' commitment to enhance the operational efficiency of energy infrastructure with emphasis on the decision-making processes that drive these critical systems.
引用
收藏
页码:12 / 17
页数:6
相关论文
共 50 条
  • [1] Explainable Artificial Intelligence (XAI) Approaches in Predictive Maintenance: A Review
    Sharma J.
    Mittal M.L.
    Soni G.
    Keprate A.
    Recent Patents on Engineering, 2024, 18 (05) : 18 - 26
  • [2] Explainable AI (xAI) for Anatomic Pathology
    Tosun, Akif B.
    Pullara, Filippo
    Becich, Michael J.
    Taylor, D. Lansing
    Fine, Jeffrey L.
    Chennubhotla, S. Chakra
    ADVANCES IN ANATOMIC PATHOLOGY, 2020, 27 (04) : 241 - 250
  • [3] XAI for Predictive Maintenance
    Gama, Joao
    Nowaczyk, Slawomir
    Pashami, Sepideh
    Ribeiro, Rita P.
    Nalepa, Grzegorz J.
    Veloso, Bruno
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 5798 - 5799
  • [4] Explainable AI in Manufacturing: A Predictive Maintenance Case Study
    Hrnjica, Bahrudin
    Softic, Selver
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: TOWARDS SMART AND DIGITAL MANUFACTURING, PT II, 2020, 592 : 66 - 73
  • [5] Enhancing transparency and trust in AI-powered manufacturing: A survey of explainable AI (XAI) applications in smart manufacturing in the era of industry 4.0/5.0
    Nikiforidis, Konstantinos
    Kyrtsoglou, Alkiviadis
    Kotsiopoulos, Thanasis
    Vafeiadis, Thanasis
    Nizamis, Alexandros
    Ioannidis, Dimosthenis
    Votis, Konstantinos
    Tzovaras, Dimitrios
    Sarigiannidis, Panagiotis
    ICT EXPRESS, 2025, 11 (01): : 135 - 148
  • [6] EXplainable AI (XAI) approach to image captioning
    Han, Seung-Ho
    Kwon, Min-Su
    Choi, Ho-Jin
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 589 - 594
  • [7] A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI
    Tjoa, Erico
    Guan, Cuntai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (11) : 4793 - 4813
  • [8] Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities
    Saeed, Waddah
    Omlin, Christian
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [9] Explainable AI (XAI): Core Ideas, Techniques, and Solutions
    Dwivedi, Rudresh
    Dave, Devam
    Naik, Het
    Singhal, Smiti
    Omer, Rana
    Patel, Pankesh
    Qian, Bin
    Wen, Zhenyu
    Shah, Tejal
    Morgan, Graham
    Ranjan, Rajiv
    ACM COMPUTING SURVEYS, 2023, 55 (09)
  • [10] Seamful XAI: Operationalizing Seamful Design in Explainable AI
    Ehsan U.
    Liao Q.V.
    Passi S.
    Riedl M.O.
    Daumé H.I.I.I.
    Proceedings of the ACM on Human-Computer Interaction, 2024, 8 (CSCW1)