A surrogate-assisted expensive constrained multi-objective global optimization algorithm and application

被引:0
|
作者
Wang, Wenxin [1 ]
Dong, Huachao [1 ]
Wang, Xinjing [1 ]
Wang, Peng [1 ]
Shen, Jiangtao [1 ]
Liu, Guanghui [1 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710068, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-level selection; Adaptive sampling; Global optimization; Expensive constrained multi-objective; Blended-wing-body underwater glider; EVOLUTIONARY ALGORITHM; DESIGN; STRATEGY;
D O I
10.1016/j.asoc.2024.112226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expensive multi-objective optimization problems (MOPs) have seen the successful applications of surrogateassisted evolutionary algorithms (SAEAs). Nevertheless, the majority of SAEAs are developed for costly unconstrained optimization, and costly constrained MOPs (CMOPs) have received less attention. Therefore, this article proposes a surrogate-assisted global optimization algorithm (named CTEA) for solving CMOPs within a very limited number of fitness evaluations. The proposed algorithm combines two selection frameworks, a bi-level selection framework, and an adaptive sampling framework, to enhance optimization performance. Leveraging on a constraint-improving strategy and a Pareto-based three-indicator criterion (convergence, constraint, and diversity indicators) at the different levels, the proposed bi-level selection framework can select more promising solutions. Moreover, an adaptive sampling framework is developed to prioritize objective and constraint functions and select the candidate solutions for real function evaluations according to the priority. Experimental results demonstrate that the proposed CTEA exhibits superior performance when compared with five state-of-theart algorithms, achieving the best results in 61.9% out of the 64 test instances. Finally, CTEA is applied to the multidisciplinary design optimization of blended-wing-body underwater gliders, and an impressive solution set is obtained.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Multi-objective global and local Surrogate-Assisted optimization on polymer flooding
    Zhang, Ruxin
    Chen, Hongquan
    FUEL, 2023, 342
  • [22] SEAMS: A surrogate-assisted evolutionary algorithm with metric-based dynamic strategy for expensive multi-objective optimization
    Liu, Haitao
    Wang, Chia-Hung
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265
  • [23] An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization
    Nan Zheng
    Handing Wang
    Bo Yuan
    Complex & Intelligent Systems, 2022, 8 : 4339 - 4356
  • [24] An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization
    Zheng, Nan
    Wang, Handing
    Yuan, Bo
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 4339 - 4356
  • [25] Surrogate-assisted operator-repeated evolutionary algorithm for computationally expensive multi-objective problems
    Cai, Xiwen
    Zou, Tao
    Gao, Liang
    APPLIED SOFT COMPUTING, 2023, 147
  • [26] Investigating the performance of a surrogate-assisted nutcracker optimization algorithm on multi-objective optimization problems
    Evangeline, S. Ida
    Darwin, S.
    Anandkumar, P. Peter
    Sreenivasan, V. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [27] A Surrogate-Assisted Partial Optimization for Expensive Constrained Optimization Problems
    Nishihara, Kei
    Nakata, Masaya
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT II, PPSN 2024, 2024, 15149 : 391 - 407
  • [28] A Novel Surrogate-Assisted Multi-Objective Optimization Algorithm for an Electromagnetic Machine Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    Yeo, Han-Kyeol
    Jung, Sang-Yong
    Ro, Jong-Suk
    Jung, Hyun-Kyo
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [29] A New Robust Surrogate-Assisted Multi-Objective Optimization Algorithm for an IPMSM Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    Yeo, Han-Kyeol
    Jung, Sang-Yong
    Jung, Hyun-Kyo
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [30] Constrained Dropout Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Problems
    Zhang R.
    Bai X.-L.
    Pan L.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (07): : 1859 - 1867