Regeneration of Nonhuman Primate Hearts With Human Induced Pluripotent Stem Cell-Derived Cardiac Spheroids

被引:11
|
作者
Kobayashi, Hideki [1 ]
Tohyama, Shugo [7 ]
Ohashi, Noburo [2 ]
Ichimura, Hajime [2 ,4 ]
Chino, Shuji [2 ]
Soma, Yusuke [7 ]
Tani, Hidenori [7 ]
Tanaka, Yuki [2 ,4 ]
Yang, Xiao [4 ]
Shiba, Naoko [4 ]
Kadota, Shin [4 ,5 ]
Haga, Kotaro [7 ]
Moriwaki, Taijun [7 ]
Morita-Umei, Yuika [7 ,8 ]
Umei, Tomohiko C. [7 ]
Sekine, Otoya [7 ]
Kishino, Yoshikazu [7 ]
Kanazawa, Hideaki [7 ]
Kawagishi, Hiroyuki [3 ,5 ]
Yamada, Mitsuhiko [3 ]
Narita, Kazumasa [6 ,9 ]
Naito, Takafumi [6 ,9 ]
Seto, Tatsuichiro [2 ,7 ]
Kuwahara, Koichiro [1 ,5 ]
Shiba, Yuji [4 ,5 ]
Fukuda, Keiichi [7 ]
机构
[1] Shinshu Univ, Dept Cardiovasc Med, Matsumoto, Japan
[2] Shinshu Univ, Dept Surg, Div Cardiovasc Surg, Matsumoto, Japan
[3] Shinshu Univ, Dept Mol Pharmacol, Matsumoto, Japan
[4] Shinshu Univ, Sch Med, Dept Regenerat Sci & Med, Matsumoto, Japan
[5] Shinshu Univ, Inst Biomed Sci, Matsumoto, Japan
[6] Shinshu Univ, Grad Sch Med, Dept Clin Pharmacol & Therapeut, Matsumoto, Japan
[7] Keio Univ, Sch Med, Dept Cardiol, Tokyo, Japan
[8] Kanagawa Inst Ind Sci & Technol, Atsugi, Japan
[9] Shinshu Univ Hosp, Dept Pharm, Matsumoto, Japan
基金
日本学术振兴会;
关键词
arrhythmia; cardiomyocyte (CM); cynomolgus monkey; human induced pluripotent stem cell (hiPSC); myocardial infarction; transplantation; CARDIOMYOCYTES; TRANSPLANTATION; PROGENITORS; SURVIVAL; THERAPY;
D O I
10.1161/CIRCULATIONAHA.123.064876
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2x10(7) CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6x10(7) CMs). RESULTS: Recipients of hiPSC-CSs containing 2x10(7) CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean +/- SD]: 26.2 +/- 2.1%; 19.3 +/- 1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5 +/- 1.0%; 16.6 +/- 1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0 +/- 1.4%; 36.3 +/- 2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6x10(7) CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
引用
收藏
页码:611 / 621
页数:11
相关论文
共 50 条
  • [41] Human induced pluripotent stem cell-derived therapies for regeneration after central nervous system injury
    Stephen Vidman
    Yee Hang Ethan Ma
    Nolan Fullenkamp
    Giles W.Plant
    Neural Regeneration Research, 2025, 20 (11) : 3063 - 3075
  • [42] Transplantation of human induced pluripotent stem cell-derived neural crest cells for corneal endothelial regeneration
    Yajie Gong
    Haoyun Duan
    Xin Wang
    Can Zhao
    Wenjing Li
    Chunxiao Dong
    Zongyi Li
    Qingjun Zhou
    Stem Cell Research & Therapy, 12
  • [43] Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids
    Hua, Timothy
    Kiran, Sonia
    Li, Yan
    Sang, Qing-Xiang Amy
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 435
  • [44] MESENCHYMAL STEM CELL-DERIVED EXTRACELLULAR VESICLES ATTENUATE CARDIAC HYPERTROPHY IN A CELLULAR MODEL OF HUMAN-INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES
    Constantin, A.
    Alexandru, N.
    Filippi, A.
    Nemecz, M.
    Vilcu, A.
    Chitoiu, L.
    Gherghiceanu, M.
    Georgescu, A.
    ATHEROSCLEROSIS, 2022, 355 : E315 - E315
  • [45] Optical control of human induced pluripotent stem cell-derived photoreceptors
    Garita-Hernandez, M.
    Chaffiol, A.
    Guibbal, L.
    Keomani, E.
    Slembrouck, A.
    Gagliardi, G.
    Reichman, S.
    Goureau, O.
    Duebel, J.
    Dalkara, D.
    HUMAN GENE THERAPY, 2016, 27 (11) : A119 - A119
  • [46] Cytotoxicity of propofol in human induced pluripotent stem cell-derived cardiomyocytes
    Koji Kido
    Hiroyuki Ito
    Yudai Yamamoto
    Koshi Makita
    Tokujiro Uchida
    Journal of Anesthesia, 2018, 32 : 120 - 131
  • [47] The Role of Large Animal Models in Cardiac Regeneration Research Using Human Pluripotent Stem Cell-Derived Cardiomyocytes
    Cheng, Yuan-Yuan
    Hu, Yu-Feng
    Hsieh, Patrick Ching-Ho
    CURRENT CARDIOLOGY REPORTS, 2023, 25 (05) : 325 - 331
  • [48] The Role of Large Animal Models in Cardiac Regeneration Research Using Human Pluripotent Stem Cell-Derived Cardiomyocytes
    Yuan-Yuan Cheng
    Yu-Feng Hu
    Patrick Ching-Ho Hsieh
    Current Cardiology Reports, 2023, 25 : 325 - 331
  • [49] Modeling Effects of Immunosuppressive Drugs on Human Hearts Using Induced Pluripotent Stem Cell-Derived Cardiac Organoids and Single-Cell RNA Sequencing
    Sallam, Karim
    Thomas, Dilip
    Gaddam, Sadhana
    Lopez, Nicole
    Beck, Aimee
    Beach, Leila
    Rogers, Albert J.
    Zhang, Hao
    Chen, Ian Y.
    Ameen, Mohamed
    Hiesinger, William
    Teuteberg, Jeffrey J.
    Rhee, June-Wha
    Wang, Kevin C.
    Sayed, Nazish
    Wu, Joseph C.
    CIRCULATION, 2022, 145 (17) : 1367 - 1369
  • [50] Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Paci, Michelangelo
    Penttinen, Kirsi
    Pekkanen-Mattila, Mari
    Koivumaki, Jussi T.
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2021, 77 (03) : 300 - 316