GAN-Based Temporal Association Rule Mining on Multivariate Time Series Data

被引:1
|
作者
He, Guoliang [1 ]
Dai, Lifang [2 ]
Yu, Zhiwen [3 ]
Chen, C. L. Philip [3 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Informat Engn, Wuhan 430073, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[3] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Data mining; Time series analysis; Generative adversarial networks; Feature extraction; Deep learning; Velocity measurement; Transformers; Generative adversarial network; multivariate time series; temporal association rule; NETWORK;
D O I
10.1109/TKDE.2023.3335049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature mining is a challenging work in the field of multivariate time series (MTS) data mining. Traditional methods suffer from three major issues. 1) Learned shapelets may seriously diverge from original subsequences since learning methods do not restrain the learned ones similar to raw sequences, which reduces interpretability. 2) Existing rule mining methods just generate association rules based on feature combination of different variables without considering temporal relations among features, which could not adequately express the essential characteristics of MTS data. 3) Most deep learning methods only mine global and high-level features of MTS data, which affects interpretability. To address these issues, we propose a temporal association rule mining method based on Generative Adversarial Network (GAN) called TAR-GAN. First, a shapelet mining method based on GAN (SGAN) is advanced to discover dataset-level and sample-level shapelets of all variables in MTS data. Second, a Temporal Graph based Rule Mining method (TGRM) is introduced to discover temporal association rules based on the temporal relationships among shapelets of different variables. Meanwhile, a Fast Convolution-based Similarity Measure method<strike>s</strike> (FCSM) is introduced to measure the similarity between MTS samples and temporal association rules. Furthermore, an adversarial training strategy is introduced to ensure the effectiveness and stability of generated temporal association rules, which could reflect the essential characteristics of MTS data. Extensive experiments on 12 datasets show the effectiveness and efficiency of our method.
引用
收藏
页码:5168 / 5180
页数:13
相关论文
共 50 条
  • [41] Research of Association Rule Algorithm based on Data Mining
    Song, Changxin
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2016, : 23 - 26
  • [42] Mining association rule efficiently based on data warehouse
    Xiao-hong Chen
    Bang-chuan Lai
    Ding Luo
    Journal of Central South University of Technology, 2003, 10 : 375 - 380
  • [43] A GAN-Based Anomaly Detection Approach for Imbalanced Industrial Time Series
    Jiang, Wenqian
    Hong, Yang
    Zhou, Beitong
    He, Xin
    Cheng, Cheng
    IEEE ACCESS, 2019, 7 : 143608 - 143619
  • [44] Online Rule-Based Classifier Learning on Dynamic Unlabeled Multivariate Time Series Data
    He, Guoliang
    Xin, Xin
    Peng, Rong
    Han, Min
    Wang, Juan
    Wu, Xiaoqun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (02): : 1121 - 1134
  • [45] Extended vertical lists for temporal pattern mining from multivariate time series
    Kocheturov, Anton
    Momcilovic, Petar
    Bihorac, Azra
    Pardalos, Panos M.
    EXPERT SYSTEMS, 2019, 36 (05)
  • [46] GAN-based synthetic time-series data generation for improving prediction of demand for electric vehicles
    Chatterjee, Subhajit
    Hazra, Debapriya
    Byun, Yung-Cheol
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [47] Anomaly Detection Paradigm for Multivariate Time Series Data Mining for Healthcare
    Razaque, Abdul
    Abenova, Marzhan
    Alotaibi, Munif
    Alotaibi, Bandar
    Alshammari, Hamoud
    Hariri, Salim
    Alotaibi, Aziz
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [48] Data Mining Frequent Temporal Events In Agrieconomic Time Series
    Correa, F. E.
    Gama, J.
    Correa, P. L. P.
    Alves, L. R. A.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (07) : 2329 - 2334
  • [49] Efficient Algorithm for Mining Temporal Association Rule
    Junheng-Huang
    Wang-Wei
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (04): : 268 - 271
  • [50] ARTAR: Temporal Association Rule Mining Algorithm Based on Attribute Reduction
    Ni, Jiancheng
    Cao, Bo
    Yao, Binxiu
    Yu, Pingping
    Li, Linlin
    2016 FIRST IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND THE INTERNET (ICCCI 2016), 2016, : 350 - 353