Large-scale-adaptive fringe projection 3D measurement

被引:0
|
作者
Zhang, Xiaojie [1 ,2 ,3 ]
Miao, Yupei [1 ,2 ,3 ]
Tang, Qijian [1 ,2 ,3 ]
Cai, Zewei [1 ,2 ,3 ]
Chen, Zhipeng [4 ]
Liang, Anbang [4 ]
Yin, Yu [4 ]
Peng, Xiang [1 ,2 ,3 ]
Liu, Xiaoli [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ, Shenzhen 518060, Guangdong, Peoples R China
[2] Shenzhen Univ, Guangdong Prov Coll Phys & Optoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
[3] Shenzhen Univ, Key Lab Intelligent Opt Measurement & Detect, Shenzhen 518060, Guangdong, Peoples R China
[4] Guangdong Key Lab Urban Informat, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
LIGHT; MODEL;
D O I
10.1364/OL.532887
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fringe projection profilometry (FPP) faces significant challenges regarding calibration difficulty and stitching error accumulation when operating across scenes ranging from tens to hundreds of meters. This Letter presents a calibration-free 3D measurement method by integrating a binocular vision of a FPP scanner with a wide field-of-view (FoV) vision that constructs global benchmarks to unify local 3D scanning and global 3D stitching, which is adaptable to arbitrarily large-scale scenes. A posterior global optimization model is then established to determine the reconstruction parameters and stitching poses simultaneously at each scanning node with adaptively distributed benchmarks. Consequently, the integrated vision measurement system not only eliminates the large-scale pre-calibration and stitching error accumulation but also overcomes system structural instability during moving measurement. With the proposed method, we achieved 3D measurements with an accuracy of 0.25 mm and a density of 0.5 mm for over 50-m-long scenes. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:4485 / 4488
页数:4
相关论文
共 50 条
  • [21] 3D shape measurement by thermal fringe projection: optimization of infrared (IR) projection parameters
    Landmann, Martin
    Heist, Stefan
    Brahm, Anika
    Schindwolf, Simon
    Kuehmstedt, Peter
    Notni, Gunther
    DIMENSIONAL OPTICAL METROLOGY AND INSPECTION FOR PRACTICAL APPLICATIONS VII, 2018, 10667
  • [22] Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement
    Li, Dong
    Kofman, Jonathan
    OPTICS EXPRESS, 2014, 22 (08): : 9887 - 9901
  • [23] Dynamic 3D measurement based on orthogonal fringe projection and geometric constraints
    Bao, Qingkang
    LI, Jian
    LI, Xufeng
    Zhang, Tianyu
    Zhao, Hong
    Zhang, Chunwei
    OPTICS LETTERS, 2022, 47 (21) : 5541 - 5544
  • [24] Fringe projection profilometry for 3D measurement of objects with different depth of fields
    Wu R.
    Zhao S.
    Zhao Y.
    Xie F.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (11):
  • [25] A method for fast 3D fringe projection measurement without phase unwrapping
    Liu, Xiaoli
    Yang, Yang
    Tang, Qijian
    Cai, Zewei
    Peng, Xiang
    Liu, Menglong
    Li, Qingquan
    SIXTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2018), 2018, 10827
  • [26] Recent progress on 3D shape and deformation measurement based on fringe projection
    Wu Zhou-jie
    Zhang Qi-can
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (06) : 730 - 747
  • [27] Evaluation of absolute phase for 3D profile measurement using fringe projection
    黄梦涛
    蒋庄德
    李兵
    方素平
    Chinese Optics Letters, 2006, (06) : 320 - 322
  • [28] Phase correction method for dynamic 3D measurement based on fringe projection
    Zhou, Xingcan
    Li, Yong
    Huang, Kai
    Jiang, Yiteng
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS VI, 2019, 11189
  • [29] Autofocus methods for 3D shape measurement with digital fringe projection techniques
    Zhang, Song
    INTERFEROMETRY XX, 2020, 11490
  • [30] FULLY AUTOMATIC DIGITAL FRINGE PROJECTION MEASUREMENT FOR 3D FACIAL SURFACE
    Liu, Cheng-Yang
    Wang, Cheng-Yu
    Teng, Li-Wei
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2019, 19 (02)