Multi-label feature selection by strongly relevant label gain and label mutual aid

被引:32
|
作者
Dai, Jianhua [1 ]
Huang, Weiyi [1 ]
Zhang, Chucai [1 ]
Liu, Jie [1 ]
机构
[1] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy rough set; Fuzzy conditional mutual information; Multi-label feature selection; Strongly relevant label gain; Label mutual aid; CLASSIFICATION; INFORMATION;
D O I
10.1016/j.patcog.2023.109945
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label feature selection, which addresses the challenge of high dimensionality in multi-label learning, has wide applicability in pattern recognition, machine learning, and related domains. Most existing studies on multi-label feature selection assume that all labels have the same importance with respect to features, however, they overlook the differences between labels and candidate features relative to selected features and the internal influence of the label space. To address this issue, we propose a novel method for multi-label feature selection that accounts for both the strongly relevant label gain and the label mutual aid. Firstly, we advance two new potential relationships between labels and candidate features relative to selected features, and the label discriminant function is introduced. Secondly, the mutual aid information between labels is presented to describe the internal correlation of the label space. Thirdly, the concept of strongly relevant label gain is defined based on the label discriminant function, which allows better exploration of positive correlation between features. Finally, the experimental results on sixteen multi-label benchmark datasets indicate that the proposed method outperforms other compared representative multi-label feature selection methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Partial Multi-Label Feature Selection
    Wang, Jing
    Li, Peipei
    Yu, Kui
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [32] Multi-label feature selection via joint label enhancement and pairwise label correlations
    Jinghua Liu
    Songwei Yang
    Yaojin Lin
    Chenxi Wang
    Cheng Wang
    Jixiang Du
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3943 - 3964
  • [33] Multi-label feature selection via joint label enhancement and pairwise label correlations
    Liu, Jinghua
    Yang, Songwei
    Lin, Yaojin
    Wang, Chenxi
    Wang, Cheng
    Du, Jixiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (11) : 3943 - 3964
  • [34] Dynamic multi-label feature selection algorithm based on label importance and label correlation
    Chen, Weiliang
    Sun, Xiao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3379 - 3396
  • [35] Multi-label feature selection based on minimizing feature redundancy of mutual information
    Zhou, Gaozhi
    Li, Runxin
    Shang, Zhenhong
    Li, Xiaowu
    Jia, Lianyin
    NEUROCOMPUTING, 2024, 607
  • [36] Feature-specific mutual information variation for multi-label feature selection
    Hu, Liang
    Gao, Lingbo
    Li, Yonghao
    Zhang, Ping
    Gao, Wanfu
    INFORMATION SCIENCES, 2022, 593 : 449 - 471
  • [37] Multi-label Feature Selection Techniques for Hierarchical Multi-label Protein Function Prediction
    Cerri, Ricardo
    Mantovani, Rafael G.
    Basgalupp, Marcio P.
    de Carvalho, Andre C. P. L. F.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [38] Multi-label causal feature selection based on neighbourhood mutual information
    Wang, Jie
    Lin, Yaojin
    Li, Longzhu
    Wang, Yun-an
    Xu, Meiyan
    Chen, Jinkun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3509 - 3522
  • [39] Feature Selection for Multi-label Learning Using Mutual Information and GA
    Yu, Ying
    Wang, Yinglong
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 454 - 463
  • [40] Feature selection for multi-label classification using multivariate mutual information
    Lee, Jaesung
    Kim, Dae-Won
    PATTERN RECOGNITION LETTERS, 2013, 34 (03) : 349 - 357