Noise suppression in photon-counting computed tomography using unsupervised Poisson flow generative models

被引:0
|
作者
Hein, Dennis [1 ,2 ]
Holmin, Staffan [3 ,4 ]
Szczykutowicz, Timothy [5 ]
Maltz, Jonathan S. [6 ]
Danielsson, Mats [1 ,2 ]
Wang, Ge [7 ]
Persson, Mats [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Dept Phys, S-1142 Stockholm, Sweden
[2] Karolinska Univ Hosp, MedTechLabs, S-17164 Stockholm, Sweden
[3] Karolinska Inst, Dept Clin Neurosci, S-17164 Stockholm, Sweden
[4] Karolinska Univ Hosp, Dept Neuroradiol, S-17164 Stockholm, Sweden
[5] Univ Wisconsin, Sch Med & Publ Hlth, Dept Radiol, Madison, WI 53705 USA
[6] GE HealthCare, Waukesha, WI 53188 USA
[7] Rensselaer Polytech Inst, Biomed Imaging Ctr, Ctr Biotechnol & Interdisciplinary Studies, Sch Engn,Dept Biomed Engn, Troy, NY 12180 USA
关键词
Deep learning; Photon-counting CT; Denoising; Diffusion models; Poisson flow generative models; NETWORK; REDUCTION;
D O I
10.1186/s42492-024-00175-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning (DL) has proven to be important for computed tomography (CT) image denoising. However, such models are usually trained under supervision, requiring paired data that may be difficult to obtain in practice. Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling. In particular, using the estimated unconditional score function of the prior distribution, obtained via unsupervised learning, one can sample from the desired posterior via hijacking and regularization. However, due to the iterative solvers used, the number of function evaluations (NFE) required may be orders of magnitudes larger than for single-step samplers. In this paper, we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models (PFGM)++. By hijacking and regularizing the sampling process we obtain a single-step sampler, that is NFE = 1. Our proposed method incorporates posterior sampling using diffusion models as a special case. We demonstrate that the added robustness afforded by the PFGM++ framework yields significant performance gains. Our results indicate competitive performance compared to popular supervised, including state-of-the-art diffusion-style models with NFE = 1 (consistency models), unsupervised, and non-DL-based image denoising techniques, on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Innovative advances in pediatric radiology: computed tomography reconstruction techniques, photon-counting detector computed tomography, and beyond
    Mese, Ismail
    Mese, Ceren Altintas
    Demirsoy, Ugur
    Anik, Yonca
    PEDIATRIC RADIOLOGY, 2024, 54 (01) : 1 - 11
  • [42] Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology
    Hagen, Florian
    Soschynski, Martin
    Weis, Meike
    Hagar, Muhammad Taha
    Krumm, Patrick
    Ayx, Isabelle
    Taron, Jana
    Krauss, Tobias
    Hein, Manuel
    Ruile, Philipp
    von zur Muehlen, Constantin
    Schlett, Christopher L.
    Neubauer, Jakob
    Tsiflikas, Ilias
    Russe, Maximilian Frederik
    Arnold, Philipp
    Faby, Sebastian
    Froelich, Matthias F.
    Weiss, Jakob
    Stein, Thomas
    Overhoff, Daniel
    Bongers, Malte
    Nikolaou, Konstantin
    Schoenberg, Stefan O.
    Bamberg, Fabian
    Horger, Marius
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024, 196 (01): : 25 - 35
  • [43] Review of an initial experience with an experimental spectral photon-counting computed tomography system
    Si-Mohamed, Salim
    Bar-Ness, Daniel
    Sigovan, Monica
    Cormode, David P.
    Coulon, Philippe
    Coche, Emmanuel
    Vlassenbroek, Alain
    Normand, Gabrielle
    Boussel, Loic
    Douek, Philippe
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 873 : 27 - 35
  • [44] Comparison of cone-beam computed tomography with photon-counting detector computed tomography for dental implant surgery
    Husain, Adib Al-Haj
    Mergen, Victor
    Valdec, Silvio
    Husain, Nadin Al-Haj
    Stadlinger, Bernd
    Essig, Harald
    Frauenfelder, Thomas
    Kessler, Peter
    Lie, Suen An Nynke
    Alkadhi, Hatem
    Winklhofer, Sebastian
    INTERNATIONAL JOURNAL OF IMPLANT DENTISTRY, 2025, 11 (01)
  • [45] Energy-Sensitive, Photon-Counting Computed Tomography: Opportunities and Technological Challenges
    Roessl, E.
    Brendel, B.
    Martens, G.
    Proksa, R.
    Schmidt, F.
    Thran, A.
    Schlomka, J.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [46] Photon-counting computed tomography of coronary and peripheral artery stents: a phantom study
    Stein, Thomas
    Taron, Jana
    Verloh, Niklas
    Doppler, Michael
    Rau, Alexander
    Hagar, Muhammad Taha
    Faby, Sebastian
    Baltas, Dimos
    Westermann, Dirk
    Ayx, Isabelle
    Schoenberg, Stefan O.
    Nikolaou, Konstantin
    Schlett, Christopher L.
    Bamberg, Fabian
    Weiss, Jakob
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [47] Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography
    Weidinger, Thomas
    Buzug, Thorsten M.
    Flohr, Thomas
    Kappler, Steffen
    Stierstorfer, Karl
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2016, 2016
  • [48] Photon-counting detectors in computed tomography: from quantum physics to clinical practice
    Wehrse, E.
    Klein, L.
    Rotkopf, L. T.
    Wagner, W. L.
    Uhrig, M.
    Heussel, C. P.
    Ziener, C. H.
    Delorme, S.
    Heinze, S.
    Kachelriess, M.
    Schlemmer, H. -P.
    Sawall, S.
    RADIOLOGE, 2021, 61 (SUPPL 1): : 1 - 10
  • [49] Innovative advances in pediatric radiology: computed tomography reconstruction techniques, photon-counting detector computed tomography, and beyond
    Ismail Mese
    Ceren Altintas Mese
    Ugur Demirsoy
    Yonca Anik
    Pediatric Radiology, 2024, 54 : 1 - 11
  • [50] Photon-counting computed tomography thermometry via material decomposition and machine learning
    Wang, Nathan
    Li, Mengzhou
    Haverinen, Petteri
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2023, 6 (01)