Evaluating the Ability of Large Language Models to Generate Motivational Feedback

被引:1
|
作者
Gaeta, Angelo [1 ]
Orciuoli, Francesco [1 ]
Pascuzzo, Antonella [1 ]
Peduto, Angela [1 ]
机构
[1] Univ Salerno, DISA MIS, Via Giovanni Paolo II 132, I-84084 Fisciano, Sa, Italy
关键词
Large Language Model; Intelligent Tutoring Systems; Motivational feedback;
D O I
10.1007/978-3-031-63028-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper describes and evaluates the use of large language models (LLMs) to provide personalized motivational feedback in the context of Intelligent Tutoring Systems (ITS). Specifically, the main contributions of the present work are the definition of a novel evaluation framework and the early application of such a framework to assess the ability of LLMs to generate textual feedback including motivational features. The experimentation results show that LLMs demonstrate a promising ability to generate motivational feedback and, therefore, a good chance to be integrated as an additional model into the traditional ITS architecture.
引用
收藏
页码:188 / 201
页数:14
相关论文
共 50 条
  • [31] Using Large Language Models to Generate JUnit Tests: An Empirical Study
    Siddiq, Mohammed Latif
    Santos, Joanna C. S.
    Tanvir, Ridwanul Hasan
    Ulfat, Noshin
    Al Rifat, Fahmid
    Lopes, Vinicius Carvalho
    PROCEEDINGS OF 2024 28TH INTERNATION CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2024, 2024, : 313 - 322
  • [32] Plan, Generate and Match: Scientific Workflow Recommendation with Large Language Models
    Gu, Yang
    Cao, Jian
    Guo, Yuan
    Qian, Shiyou
    Guan, Wei
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT I, 2023, 14419 : 86 - 102
  • [33] Using Large Language Models to Generate Educational Materials on Childhood Glaucoma
    Dihan, Qais
    Chauhan, Muhammad z.
    Eleiwa, Taher k.
    Hassan, Amr k.
    Sallam, Ahmed b.
    Khouri, Albert s.
    Chang, Ta c.
    Elhusseiny, Abdelrahman m.
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2024, 265 : 28 - 38
  • [34] Assertify: Utilizing Large Language Models to Generate Assertions for Production Code
    Torkamani, Mohammad Jalili
    Sharma, Abhinav
    Mehrotra, Nikita
    Purandare, Rahul
    arXiv,
  • [35] The Use of Large Language Models to Generate Education Materials about Uveitis
    Kianian, Reza
    Sun, Deyu
    Crowell, Eric L.
    Tsui, Edmund
    OPHTHALMOLOGY RETINA, 2024, 8 (02): : 195 - 201
  • [36] Evaluating large language models on medical evidence summarization
    Tang, Liyan
    Sun, Zhaoyi
    Idnay, Betina
    Nestor, Jordan G.
    Soroush, Ali
    Elias, Pierre A.
    Xu, Ziyang
    Ding, Ying
    Durrett, Greg
    Rousseau, Justin F.
    Weng, Chunhua
    Peng, Yifan
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [37] Methodological Challenges in Evaluating Large Language Models in Radiology
    Li, David
    Kim, Woojin
    Yi, Paul H.
    RADIOLOGY, 2024, 313 (03)
  • [38] CLAIR: Evaluating Image Captions with Large Language Models
    Chan, David M.
    Petryk, Suzanne
    Gonzalez, Joseph E.
    Darrell, Trevor
    Canny, John
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 13638 - 13646
  • [39] Evaluating large language models on medical evidence summarization
    Liyan Tang
    Zhaoyi Sun
    Betina Idnay
    Jordan G. Nestor
    Ali Soroush
    Pierre A. Elias
    Ziyang Xu
    Ying Ding
    Greg Durrett
    Justin F. Rousseau
    Chunhua Weng
    Yifan Peng
    npj Digital Medicine, 6
  • [40] Baby steps in evaluating the capacities of large language models
    Frank, Michael C.
    NATURE REVIEWS PSYCHOLOGY, 2023, 2 (08): : 451 - 452