AdpSTGCN: Adaptive spatial-temporal graph convolutional network for traffic forecasting

被引:3
|
作者
Zhang, Xudong [1 ]
Chen, Xuewen [1 ]
Tang, Haina [1 ]
Wu, Yulei [2 ]
Shen, Hanji [3 ]
Li, Jun [3 ]
机构
[1] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[2] Univ Bristol, Sch Elect Elect & Mech Engn, Bristol BS8 1UB, England
[3] Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100083, Peoples R China
关键词
Traffic forecasting; Graph structure learning; Adaptive graph convolution; Spatial-temporal graph modeling;
D O I
10.1016/j.knosys.2024.112295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting plays a crucial role in applications such as intelligent transportation systems. Despite significant research in this field, the current methods have limitations that hinder the realization of highly accurate predictions. Existing GCN-based approaches typically rely on a definite graph structure derived from a physical topology or learned from node features, which is insufficient for building intricate spatial relationships among nodes. To address this challenge, we propose an adaptive spatial-temporal graph convolutional network for traffic forecasting. Our approach exploits a multi-head attention mechanism to construct multi-view feature graphs. We then introduce an adaptive graph convolution method to dynamically aggregate and propagate information from both the topology graph and multi-view feature graphs, which are capable of capturing complex spatial correlations across diverse proximity ranges. Furthermore, we designed a cascaded structural framework that combines temporal information with node features using gated dilated causal convolution to ensure the integrated modeling of spatial-temporal dynamics in traffic flow. Experiments on real-world datasets demonstrate that our proposed method outperforms the current mainstream methods, achieving better performance in traffic flow forecasting. The code is available at https://github.com/dhxdla/AdpSTGCN.git.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] TrafficSCINet: An Adaptive Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting
    Gong, Kai
    Han, Shiyuan
    Yang, Xiaohui
    Yu, Weiwei
    Guan, Yuanlin
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 14086 LNCS : 628 - 639
  • [2] TrafficSCINet: An Adaptive Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting
    Gong, Kai
    Han, Shiyuan
    Yang, Xiaohui
    Yu, Weiwei
    Guan, Yuanlin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 628 - 639
  • [3] Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting
    Feng, Aosong
    Tassiulas, Leandros
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3933 - 3937
  • [4] Adaptive Multi-receptive Field Spatial-Temporal Graph Convolutional Network for Traffic Forecasting
    Wang, Xing
    Zhao, Juan
    Zhu, Lin
    Zhou, Xu
    Li, Zhao
    Feng, Junlan
    Deng, Chao
    Zhang, Yong
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [5] Adaptive Spatial-Temporal Fusion Graph Convolutional Networks for Traffic Flow Forecasting
    Li, Senwen
    Ge, Liang
    Lin, Yongquan
    Zeng, Bo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] Spatial-Temporal Dynamic Graph Convolutional Network With Interactive Learning for Traffic Forecasting
    Liu, Aoyu
    Zhang, Yaying
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7645 - 7660
  • [7] STLGCN: Spatial-Temporal Graph Convolutional Network for Long Term Traffic Forecasting
    Chen, Xuewen
    Peng, Peng
    Tang, Haina
    BIG DATA TECHNOLOGIES AND APPLICATIONS, EAI INTERNATIONAL CONFERENCE, BDTA 2023, 2024, 555 : 49 - 61
  • [8] DSTAGCN: Dynamic Spatial-Temporal Adjacent Graph Convolutional Network for Traffic Forecasting
    Zheng, Qi
    Zhang, Yaying
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 241 - 253
  • [9] Spatial-temporal hypergraph convolutional network for traffic forecasting
    Zhao, Zhenzhen
    Shen, Guojiang
    Zhou, Junjie
    Jin, Junchen
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [10] Spatial-temporal hypergraph convolutional network for traffic forecasting
    Zhao Z.
    Shen G.
    Zhou J.
    Jin J.
    Kong X.
    PeerJ Computer Science, 2023, 9