Normalized clustering peak solutions for Schrödinger equations with general nonlinearities

被引:0
|
作者
Zhang, Chengxiang [1 ]
Zhang, Xu [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
35J20; 35J15; 35J60; SCALAR FIELD-EQUATIONS; SCHRODINGER-EQUATIONS; STANDING WAVES; SEMICLASSICAL STATES; CRITICAL FREQUENCY; SADDLE-POINTS; EXISTENCE; PRINCIPLE;
D O I
10.1007/s00526-024-02830-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the normalized & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-peak solutions to the nonlinear Schr & ouml;dinger equation -epsilon 2 Delta v+V(x)v=f(v)+lambda v,integral RNv2=alpha epsilon N.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\varepsilon <^>2\Delta v+V(x)v=f(v)+\lambda v,\\ \int _{\mathbb {R}<^>N}v<^>2 =\alpha \varepsilon <^>N. \end{array}\right. } \end{aligned}$$\end{document}Here lambda is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R}$$\end{document} will arise as a Lagrange multiplier, V has a local maximum point, and f is a general L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-subcritical nonlinearity that satisfies a nonlipschitzian property such that lims -> 0f(s)/s=-infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{s\rightarrow 0} f(s)/s=-\infty $$\end{document}. The peaks of solutions that we construct cluster around a local maximum of V as epsilon -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}. Since there is no information about the uniqueness or nondegeneracy of the limiting system, a sensitive lower gradient estimate should be made when the local centroids of the functions are away from the local maximum of V. We introduce a new method to obtain this estimate, which differs significantly from the ideas of del Pino and Felmer [22] (Math. Ann. 2002), where a special gradient flow with high regularity is used, and in Byeon and Tanaka [7, 8] (J. Eur. Math. Soc. 2013 & Mem. Amer. Math. Soc. 2014), where an additional translation flow is introduced. We also give the existence of ground state solutions for the autonomous problem, i.e., the case V equivalent to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\equiv 0$$\end{document}. The ground state energy is not always negative and the strict subadditivity of the ground state energy is achieved here by strict concavity.
引用
收藏
页数:41
相关论文
共 50 条
  • [21] NORMALIZED SOLUTIONS FOR CHOQUARD EQUATIONS WITH GENERAL NONLINEARITIES
    Yuan, Shuai
    Chen, Sitong
    Tang, Xianhua
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 291 - 309
  • [22] Normalized Solutions for Schrödinger System with Subcritical Sobolev Exponent and Combined Nonlinearities
    Maoding Zhen
    The Journal of Geometric Analysis, 2022, 32
  • [23] Classification of nonnegative solutions to static Schrödinger–Hartree and Schrödinger–Maxwell equations with combined nonlinearities
    Wei Dai
    Zhao Liu
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [24] Standing Waves of Fractional Schrödinger Equations with Potentials and General Nonlinearities
    Li, Zaizheng
    Zhang, Qidi
    Zhang, Zhitao
    ANALYSIS IN THEORY AND APPLICATIONS, 2023,
  • [25] Multiple Solutions for Discrete Schrödinger Equations with Concave–Convex Nonlinearities
    Yumiao Fan
    Qilin Xie
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [26] Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities
    Yanheng Ding
    Xiaoying Liu
    Manuscripta Mathematica, 2013, 140 : 51 - 82
  • [27] Normalized solutions of mass subcritical Schrödinger equations in exterior domains
    Zexin Zhang
    Zhitao Zhang
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [28] Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations
    Jianfu Yang
    Jinge Yang
    Science China Mathematics, 2022, 65 : 1383 - 1412
  • [29] Normalized Ground State Solutions for Critical Growth Schrödinger Equations
    Song Fan
    Gui-Dong Li
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [30] Schrödinger equations with concave and convex nonlinearities
    Zhaoli Liu
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 609 - 629