A decomposition theorem for Q-Fano Kahler-Einstein varieties

被引:0
|
作者
Druel, Stephane [1 ]
Guenancia, Henri [2 ]
Paun, Mihai [3 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
[2] Univ Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse 9, France
[3] Univ Bayreuth, Lehrstuhl Math 8, D-95440 Bayreuth, Germany
关键词
Q-Fano varieties; singular Kahler-Einstein metrics; stable reflexive sheaves; algebraically integrable foliations; TRIVIAL CANONICAL CLASS; METRICS; FOLIATIONS; STABILITY; SPACES; LIMITS;
D O I
10.5802/crmath.612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Q-Fano variety admitting a Kahler-Einstein metric. We prove that up to a finite quasietale cover, X splits isometrically as a product of Kahler-Einstein Q-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of TX by OX is polystable with respect to the anticanonical polarization.
引用
收藏
页码:93 / 118
页数:27
相关论文
共 50 条
  • [41] A valuative criterion for uniform K-stability of Q-Fano varieties
    Fujita, Kento
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 309 - 338
  • [42] Kahler-Einstein metrics on Pasquier's two-orbits varieties
    Kanemitsu, Akihiro
    MANUSCRIPTA MATHEMATICA, 2022, 169 (1-2) : 297 - 311
  • [43] Convergence of Kahler-Einstein orbifolds
    Sesum, N
    JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (01) : 171 - 184
  • [44] Kahler-Einstein Metrics and Stability
    Chen, Xiuxiong
    Donaldson, Simon
    Sun, Song
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (08) : 2119 - 2125
  • [45] Complete Kahler-Einstein manifolds
    Kuehnel, Marco
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 171 - 181
  • [46] The degree of Q-Fano threefolds
    Prokhorov, Yu. G.
    SBORNIK MATHEMATICS, 2007, 198 (11-12) : 1683 - 1702
  • [47] Positivity in Kahler-Einstein theory
    Di Cerbo, Gabriele
    Di Cerbo, Luca F.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 159 (02) : 321 - 338
  • [48] Coupled Kahler-Einstein Metrics
    Hultgren, Jakob
    Nystrom, D. Witt
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (21) : 6765 - 6796
  • [49] OPENNESS OF UNIFORM K-STABILITY IN FAMILIES OF Q-FANO VARIETIES
    Blum, Harold
    Liu, Yuchen
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2022, 55 (01): : 1 - 41
  • [50] KAHLER A-HYPERSURFACES IN A KAHLER-EINSTEIN MANIFOLD
    ROSCA, R
    VANHECKE, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (21): : 1363 - 1366