EEG-based epileptic seizure detection using deep learning techniques: A survey

被引:1
|
作者
Xu, Jie [1 ]
Yan, Kuiting [1 ]
Deng, Zengqian [2 ]
Yang, Yankai [1 ]
Liu, Jin-Xing [1 ]
Wang, Juan [1 ]
Yuan, Shasha [1 ]
机构
[1] Qufu Normal Univ, Sch Comp Sci, Rizhao 276826, Peoples R China
[2] Qingdao Univ Technol, Sch Informat & Control Engn, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
Epilepsy; Seizure detection; EEG; Deep learning; Hybrid models; NEURAL-NETWORK; WAVELET TRANSFORM; CLASSIFICATION; AUTOENCODERS; PERFORMANCE; FEATURES; BLDA;
D O I
10.1016/j.neucom.2024.128644
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is a complex neurological disorder marked by recurrent seizures, often stemming from abnormal discharge of the brain. Electroencephalogram (EEG) captures temporal and spatial shifts in cerebral electrical activity, holding pivotal diagnostic and therapeutic value for epilepsy. Deep learning techniques have made remarkable progress in EEG-based seizure detection over recent years. This review is dedicated to exploring seizure detection approaches based on deep learning, focusing on three distinct avenues. Primarily, we delve into the application of canonical deep learning methods in epilepsy detection. Subsequently, a more in-depth study was conducted on the hybrid models of deep learning. Next, the third is the integration of deep learning and traditional machine learning strategies. Finally, the challenges and future prospects related to this topic are put forward. The uniqueness of this review lies in its novel and comprehensive perspective on the latest research on deep learning-based epilepsy detection by systematically classifying methods, visualizing research progress, and addressing challenges and gaps in current research. It can provide valuable guidance for researchers who want to delve into the field of epileptic seizure detection based on EEG signals.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Epileptic Seizure Detection Based on Variational Mode Decomposition and Deep Forest Using EEG Signals
    Liu, Xiang
    Wang, Juan
    Shang, Junliang
    Liu, Jinxing
    Dai, Lingyun
    Yuan, Shasha
    BRAIN SCIENCES, 2022, 12 (10)
  • [42] Integrated TSVM-TSK fusion for enhanced EEG-based epileptic seizure detection: Robust classifier with competitive learning
    Kalpana, C.
    Mohanbabu, G.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [43] Epileptic seizure detection by analyzing EEG signals using different transformation techniques
    Parvez, Mohammad Zavid
    Paul, Manoranjan
    NEUROCOMPUTING, 2014, 145 : 190 - 200
  • [44] Epileptic Seizure Detection using EEG Signals
    Khan, Irfan Mabood
    Khan, Mohd Maaz
    Farooq, Omar
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 111 - 117
  • [45] A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal
    Saminu, Sani
    Xu, Guizhi
    Shuai, Zhang
    Abd El Kader, Isselmou
    Jabire, Adamu Halilu
    Ahmed, Yusuf Kola
    Karaye, Ibrahim Abdullahi
    Ahmad, Isah Salim
    BRAIN SCIENCES, 2021, 11 (05)
  • [46] Revised Tunable Q-Factor Wavelet Transform for EEG-Based Epileptic Seizure Detection
    Liu, Zhen
    Zhu, Bingyu
    Hu, Manfeng
    Deng, Zhaohong
    Zhang, Jingxiang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1707 - 1720
  • [47] An Interpretable Deep Learning Classifier for Epileptic Seizure Prediction Using EEG Data
    Jemal, Imene
    Mezghani, Neila
    Abou-Abbas, Lina
    Mitiche, Amar
    IEEE ACCESS, 2022, 10 : 60141 - 60150
  • [48] Hyperdimensional Computing With Multiscale Local Binary Patterns for Scalp EEG-Based Epileptic Seizure Detection
    Du, Yipeng
    Ren, Yuan
    Wong, Ngai
    Ngai, Edith C. H.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 26046 - 26061
  • [49] Innovative deep learning models for EEG-based vigilance detection
    Souhir Khessiba
    Ahmed Ghazi Blaiech
    Khaled Ben Khalifa
    Asma Ben Abdallah
    Mohamed Hédi Bedoui
    Neural Computing and Applications, 2021, 33 : 6921 - 6937
  • [50] Innovative deep learning models for EEG-based vigilance detection
    Khessiba, Souhir
    Blaiech, Ahmed Ghazi
    Ben Khalifa, Khaled
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12): : 6921 - 6937