Adaptive feedback control for intelligent phase noise suppression in a figure-9 fiber laser

被引:0
|
作者
Tong, Lai -yuan [1 ]
Zhu, Qi -bin [2 ,3 ,4 ]
Li, Ti-j ian [2 ,3 ]
Zhang, Zhen-rong [1 ,4 ]
Luo, Ai -ping [2 ,3 ]
Liu, Meng [2 ,3 ]
Luo, Zhi -chao [2 ,3 ]
机构
[1] Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
[2] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Sch Informat & Optoelect Sci & Engn, Guangdong Prov Key Lab Nanophoton Funct Mat & Devi, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Guangzhou Key Lab Special Fiber Photon Devices & A, Guangzhou 510006, Guangdong, Peoples R China
[4] Guangxi Univ, Sch Comp Elect & Informat, Guangxi Key Lab Multimedia Commun & Network Techno, Nanning 530004, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 16期
基金
中国国家自然科学基金;
关键词
TIMING-JITTER REDUCTION; INTENSITY NOISE; SATURABLE ABSORBER; FREQUENCY COMBS; YBFIBER LASER; MODE-LOCKING; OPTIMIZATION; OPERATION;
D O I
10.1364/OE.531396
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase noise characteristics of ultrafast fiber lasers are critical to practical applications, such as high-resolution photonics sampling. Herein, we investigated the impact of pump power and linear phase shift difference of counter-propagating light in the nonlinear amplifying loop mirror on phase noise suppression in a figure-9 fiber laser. Based on these results, we proposed a method for intelligent suppression of phase noise through real-time feedback control. By adaptively controlling the linear phase shift difference and pump power, the phase noise can be effectively suppressed in the high offset frequency region even in variable environments. In particular, a reduction of similar to 21.40% of integrated timing jitter in the offset frequency region from 10 kHz to 1 MHz was achieved. Our approach was proved to be effective and automatic to obtain ultrafast lasers with low phase noise and may also facilitate the related applications.
引用
收藏
页码:28968 / 28977
页数:10
相关论文
共 50 条
  • [41] Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser
    Krzempek, Karol
    Sotor, Jaroslaw
    Abramski, Krzysztof
    OPTICS LETTERS, 2016, 41 (21) : 4995 - 4998
  • [42] COMPARISON OF LASER PHASE AND SUPPRESSION OF NOISE
    YANG, XM
    MING, Y
    HUAN, ZH
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (13): : P120 - P121
  • [43] Noise suppression of single frequency fiber laser
    Liu, Kui
    Yang, Rongguo
    Zhang, Hailong
    Bai, Yunfei
    Zhang, Junxiang
    Gao, Jiangrui
    Zhongguo Jiguang/Chinese Journal of Lasers, 2009, 36 (07): : 1852 - 1856
  • [44] Noise Suppression of a Single Frequency Fiber Laser
    Liu Kui
    Cui Shu-Zhen
    Zhang Hai-Long
    Zhang Jun-Xiang
    Gao Jiang-Rui
    CHINESE PHYSICS LETTERS, 2011, 28 (07)
  • [45] Pound-Drever-Hall feedforward: laser phase noise suppression beyond feedback
    Chao, Yu-Xin
    Hua, Zhen-Xing
    Liang, Xin-Hui
    Yue, Zong-Pei
    You, Li
    Tey, Meng Khoon
    OPTICA, 2024, 11 (07): : 945 - 950
  • [46] GHz Figure-9 Er-Doped Optical Frequency Comb Based on Nested Fiber Ring Resonators
    Cao, Xinru
    Zhou, Jiaqi
    Cheng, Zhi
    Li, Sha
    Feng, Yan
    LASER & PHOTONICS REVIEWS, 2023, 17 (11)
  • [47] Feedback control of laser intensity noise
    Buchler, BC
    Huntington, EH
    Harb, CC
    Ralph, TC
    PHYSICAL REVIEW A, 1998, 57 (02): : 1286 - 1294
  • [48] Research of the suppression of the phase noise in DFB fiber laser by self-injection locking
    Tang Jianfeng
    Zhang Yinfa
    Yu Zhenglong
    Xiong Shuidong
    Ma Lina
    ADVANCED LASER PROCESSING AND MANUFACTURING, 2016, 10018
  • [49] An adaptive feedback active noise control system
    Tsuei, TG
    Srinivasa, A
    Kuo, SM
    PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2000, : 249 - 254
  • [50] In-Situ Observation of Beam Aggregation in a Ho-Doped Figure-9 Spatiotemporal Mode-Locked Laser
    Li, Jiahe
    Meng, Yafei
    Wang, Fengqiu
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2025, 37 (02) : 97 - 100