An Android Malware Detection Method Based on Optimized Feature Extraction Using Graph Convolutional Network

被引:0
|
作者
Wang, Zhiqiang [1 ,2 ]
Wang, Zhuoyue [1 ]
Zhang, Ying [1 ]
机构
[1] Beijing Elect Sci & Technol Inst, Beijing 100070, Peoples R China
[2] State Informat Ctr, Beijing 100045, Peoples R China
关键词
Android Malware; Graph Convolutional Networks; Static Analysis; Graph Features;
D O I
10.1007/978-3-031-56583-0_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of the mobile Internet, mobile devices have been extensively promoted and popularized. Android, as the current popular mobile intelligent operating system, has encountered problems such as the explosive growth of Android malware while bringing convenience to users. The traditional Android malware detection methods have some problems, such as low detection accuracy and difficulty in detecting unknown malware. This paper proposes an Android malware detection method named Android malware detection method based on graph convolutional neural network (AGCN) based on the graph convolutional network (GCN) to solve the above problems. Firstly, we divide the Android software datasets according to family and software features and construct a directed network topology graph. At the same time, the permission features of APK files are extracted and vectorized. Then, we use GCN to learn the features of Android APK files. Finally, we compare AGCN with a multilayer perceptron (MLP), long and short-term memory (LSTM) neural network, bi-directional long and short-term memory (bi-LSTM) neural network, and deep confidence neural network (DCNN) for experiments. Experimental results show that the model has an accuracy of 98.55% for malware detection, demonstrating the detection method's effectiveness.
引用
收藏
页码:283 / 299
页数:17
相关论文
共 50 条
  • [31] DETECTION OF ANDROID MALWARE USING DEEP LEARNING ENSEMBLE WITH CHEETAH-OPTIMIZED FEATURE SELECTION
    Almotairi, Sultan
    Khan, Mohd Abdul Rahim
    Alharbi, Olayan
    Alzaid, Zaid
    Hausawi, Yasser M.
    Almutairi, Jaber
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (05): : 357 - 392
  • [32] Permission-Based Feature Scaling Method for Lightweight Android Malware Detection
    Zhu, Dali
    Xi, Tong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT I, 2019, 11775 : 714 - 725
  • [33] Android Malware Detection Using Ensemble Feature Learning
    Rout, Siddhartha Suman
    Vashishtha, Lalit Kumar
    Chatterjee, Kakali
    Rout, Jitendra Kumar
    INFORMATION SYSTEMS AND MANAGEMENT SCIENCE, ISMS 2021, 2023, 521 : 531 - 539
  • [34] An Android Malware Detection System Based on Feature Fusion
    LI Jian
    WANG Zheng
    WANG Tao
    TANG Jinghao
    YANG Yuguang
    ZHOU Yihua
    ChineseJournalofElectronics, 2018, 27 (06) : 1206 - 1213
  • [35] An Android Malware Detection System Based on Feature Fusion
    Li Jian
    Wang Zheng
    Wang Tao
    Tang Jinghao
    Yang Yuguang
    Zhou Yihua
    CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (06) : 1206 - 1213
  • [36] A Graph-Based Feature Generation Approach in Android Malware Detection with Machine Learning Techniques
    Liu, Xiaojian
    Lei, Qian
    Liu, Kehong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [37] Android malware classification using convolutional neural network and LSTM
    Soodeh Hosseini
    Ali Emamali Nezhad
    Hossein Seilani
    Journal of Computer Virology and Hacking Techniques, 2021, 17 : 307 - 318
  • [38] Android malware classification using convolutional neural network and LSTM
    Hosseini, Soodeh
    Nezhad, Ali Emamali
    Seilani, Hossein
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2021, 17 (04) : 307 - 318
  • [39] Android Malware Detection using Sequential Convolutional Neural Networks
    Sun, XingPing
    Peng, JiaYuan
    Kang, HongWei
    Shen, Yong
    2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [40] Low redundancy feature selection method for Android malware detection
    Hao J.
    Pan L.
    Li R.
    Yang P.
    Luo S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (02): : 225 - 232