Under the influence of multiple mining of coal seams, the granules structure formed by the mixing of different grain sizes exists in the collapse zone, and its compaction and re-crushing characteristics become a factor influencing the deformation and movement of the overlying rock layer. Therefore, the characteristics of sandstone granules with different gradations under cyclic loading were investigated in this manuscript. It is shown that the strain of sandstone granules increases with the increase of gradation index n, the dissipation energy of particle movement and crushing shows an increasing trend, and its porosity decreases with the increase of axial stress as a whole. At the early stage of stress loading, the highgradation sandstone granules have high compression space and crushing potential due to larger size particles, the porosity declines the fastest, the compression modulus increases sharply, and the sandstone granules is compacted rapidly at this stage. When the stress exceeds a certain range, the energy density changes and the porosity reduction of the higher-gradation granules increases, and the larger size particles in the higher-gradations granules samples are broken down into small-size particles. At the same time, the amount of energy density changes and porosity attenuation of the high-gradations sandstone granules increases, the compressive modulus increases again at this stage, the position of the granules particles moves and the distribution is re-distributed, and the granules particles are more compact after the re-distribution, which corresponds to the higher re-distribution of the high-gradations granules samples. Under the external disturbance load, the sandstone granules show the characteristics of "three stages": pore compression period, elastic deformation period, and crushing and reorganization period. The results of this study can provide theoretical support for revealing the deformation and movement mechanism of the rock mass in the collapse zone under multiple mining. (c) 2024 The Society of Powder Technology Japan. Published by Elsevier BV and The Society of Powder Technology Japan. All rights are reserved, including those for text and data mining, AI training, and