A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack

被引:11
|
作者
Sarjuni, C. A. [1 ]
Lim, B. H. [1 ]
Majlan, E. H. [1 ]
Rosli, M. I. [1 ,2 ]
机构
[1] Univ Kebangsaan Malaysia, Fuel Cell Inst, Bangi 43600, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Dept Chem & Proc Engn, Bangi 43600, Selangor, Malaysia
来源
关键词
PEM fuel cell; Fuel cell water management; Fuel cell temperature control; Bipolar plate design; PEM fuel cell stack; PEMFC fluid dynamics; GAS-DIFFUSION LAYER; FLOW DISTRIBUTION; WATER TRANSPORT; MICROPOROUS LAYER; PERFORMANCE; DESIGN; HUMIDIFICATION; OPTIMIZATION; SIMULATION; CHANNEL;
D O I
10.1016/j.rser.2024.114292
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Findings on PEMFC designs grew tremendously in the past decade. Commercially, PEMFCs are usually configured in a stack to achieve higher electrochemical output. However, the two-phase fluid transport in a multiplecell stack raises the complexity of reactant diffusion towards the porous electrodes than a single-cell stack as the higher current generation naturally increases water and heat production. Ensuring optimum hydration with even thermal distribution is critical in maintaining the MEA durability and overall electrochemical performance. Therefore, this review paper provides a comprehensive discussion of how the inconsistencies in water and thermal distribution impact the electrochemical reactiveness within the cell and electrode layers of a multiplecell PEMFC stack. Targeting the bipolar plate design is not only essential for uniform fluid distribution but it can also be used to maximise the contact surface area to achieve a greater reactant consumption rate. Hence, the effect of varying manifold, flow field and distribution zone designs towardthe fluid and reaction dynamics per cell of a multiple-cell stack were discussed based on available literature. Although the difference in water and heat saturation between single- and multiple-cell stacks could be highlighted clearly in this paper, more research is needed particularly for novel bipolar plate designs. This would be essential knowledge in generating an optimal bipolar plate design that can enhance the durability and performance of PEMFC stacks.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Voltage behavior improvement for proton exchange membrane fuel cell stack suffering fuel starvation
    Huang, Zipeng
    Zhao, Jing
    Jian, Qifei
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2019, 45 (03) : 6500 - 6514
  • [42] Dynamic performance for a kW-grade air-cooled proton exchange membrane fuel cell stack
    Zhu, Kai-Qi
    Ding, Quan
    Xu, Jiang-Hai
    Yang, Chen
    Zhang, Jing
    Zhang, Yan
    Huang, Tai-Ming
    Wan, Zhong-Min
    Wang, Xiao-Dong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (83) : 35398 - 35411
  • [43] Dynamic investigation on Proton Exchange Membrane fuel cell systems
    Haubrock, J.
    Heideck, G.
    Styczynski, Z.
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 2486 - +
  • [44] Dynamic Characteristic Study of Proton Exchange Membrane Fuel Cell
    Jia, J.
    Wang, Y.
    Han, M.
    Cham, Y. T.
    2008 IEEE INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY TECHNOLOGIES (ICSET), VOLS 1 AND 2, 2008, : 405 - +
  • [45] Dynamic heat transfer model analysis of the power generation characteristics for a proton exchange membrane fuel cell stack
    Srinivasan, P
    Sneckenberger, JE
    Feliachi, A
    PROCEEDINGS OF THE 35TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2003, : 252 - 258
  • [46] Dynamic characteristics of the proton exchange membrane fuel cell module
    Cieslinski, Janusz T.
    Kaczmarczyk, Tomasz Z.
    Dawidowicz, Bartosz
    ARCHIVES OF THERMODYNAMICS, 2018, 39 (04) : 125 - 140
  • [47] Control-oriented dynamic fuzzy model and predictive control for proton exchange membrane fuel cell stack
    Li Xi
    Deng Zhong-hua
    Cao Guang-yi
    Zhu Xin-jian
    Wei Dong
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2006, 13 (06): : 722 - 725
  • [48] Control-oriented dynamic fuzzy model and predictive control for proton exchange membrane fuel cell stack
    Xi Li
    Zhong-hua Deng
    Guang-yi Cao
    Xin-jian Zhu
    Dong Wei
    Journal of Central South University of Technology, 2006, 13 : 722 - 725
  • [49] Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stack
    Hwang, Jenn Jiang
    Chang, Wei Ru
    Kao, Jenn Kun
    Wu, Wei
    JOURNAL OF POWER SOURCES, 2012, 215 : 69 - 76
  • [50] Analysis of fluid flow behaviour in different proton exchange membrane fuel cell flow field configurations
    Sarjuni, C. T. Aisyah
    Lim, Bee Huah
    Majlan, Edy Herianto
    Rosli, Masli Irwan
    Wong, Wai Yin
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2023, 18 (06)