Sharp lower bounds for the Laplacian Estrada index of graphs

被引:0
|
作者
Barik, Sasmita [1 ]
Shamsher, Tahir [1 ]
机构
[1] IIT Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, India
关键词
Laplacian matrix; Laplacian Estrada index; Laplacian spectral radius; lower bound; maximum vertex degree;
D O I
10.1080/03081087.2024.2396132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph on n vertices, and let lambda(1), lambda(2), & mldr;, lambda n be the Laplacian eigenvalues of G. The Laplacian Estrada index of G is defined as LEE(G) = & sum;(n )(i=1)e(lambda i). Consider a graph G with n >= 3 vertices, m edges, c connected components, and the largest Laplacian eigenvalue lambda(n). Let K-n, S-n, and K-p,K- q (p + q = n) denote the complete graph, the star graph, and the complete bipartite graph on n vertices, respectively. In this paper, we establish that LEE(G) >= ne(2m/n )+ c + e(lambda n )- (c+1)e(lambda n/c+1). Furthermore, we show that the equality holds if and only if G congruent to (K) over bar (n) (the complement of K-n), G congruent to boolean OR K-c-1 (i=1)1 boolean OR S(c+1 )if n = 2c, or G congruent to K(n/2, n/2 )if G is a connected graph on an even number of vertices. As a consequence of this lower bound, we derive sharp lower bounds for the Laplacian Estrada index of a graph, considering its well-known graph parameters. This leads to improvements to some previously known lower bounds for the Laplacian Estrada index of a graph. Notably, we establish a sharp lower bound for the Laplacian Estrada index of a graph in terms of its maximum vertex degree. As an application, we demonstrate that the lower bound for the Laplacian Estrada index presented by Khosravanirad in [A Lower Bound for Laplacian Estrada Index of a Graph, MATCH Commun Math Comput Chem. 2013;70:175-180.] is not complete. Consequently, we provide a complete version of this lower bound.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On the signless Laplacian Estrada index of bicyclic graphs
    Wang, Kun
    Ning, Wenjie
    Lu, Mei
    DISCRETE APPLIED MATHEMATICS, 2018, 235 : 169 - 174
  • [22] The maximum Laplacian Estrada index of connected graphs
    Zhang, Haixia
    Zhang, Ning
    Zhang, Zhuolin
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (02): : 178 - 189
  • [23] The signless Laplacian Estrada index of evolving graphs
    Zhu, Zhongxun
    Zou, Xin
    He, Fangguo
    ARS COMBINATORIA, 2019, 146 : 307 - 321
  • [24] Some Results on Laplacian Estrada Index of Graphs
    Chen, Xiaodan
    Hou, Yaoping
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 73 (01) : 149 - 162
  • [25] THE NORMALIZED SIGNLESS LAPLACIAN ESTRADA INDEX OF GRAPHS
    Altindag, S. B. Bozkurt
    Milovanovic, E.
    Matejic, M.
    Milovanovic, I.
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (03) : 131 - 142
  • [26] Characterizing graphs with maximal Laplacian Estrada index
    Li, Jianping
    Zhang, Jianbin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 465 : 312 - 324
  • [27] On the distance signless Laplacian Estrada index of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ramane, Harishchandra
    Li, Xueliang
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (04)
  • [28] A note lower bounds for the Estrada index
    Rodriguez, Jonnathan
    Aguayo, Juan L.
    Carmona, Juan R.
    Jahanbani, Akbar
    DISCRETE MATHEMATICS, 2021, 344 (04)
  • [29] New Lower Bounds for Estrada Index
    Bamdad, Hamidreza
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) : 683 - 688
  • [30] New Lower Bounds for Estrada Index
    Hamidreza Bamdad
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 683 - 688