On 2-local derivations of von Neumann algebras

被引:0
|
作者
Liu, Lei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Derivations; 2-local derivations; von Neumann algebras; AUTOMORPHISMS;
D O I
10.1080/03081087.2024.2400490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $ \mathcal {A} $ A be a semi-finite factor von Neumann algebra. We prove that if a map $ \delta : \mathcal {A}\rightarrow \mathcal {A} $ delta:A -> A satisfies that for any $ A, B\in \mathcal {A} $ A,B is an element of A there is a linear derivation $ \delta _{A, B}: \mathcal {A}\rightarrow \mathcal {A} $ delta A,B:A -> A such that $ \delta (A)B + A\delta (B) = \delta _{A, B}(AB) $ delta(A)B+A delta(B)=delta A,B(AB), then delta is a linear derivation. It is a positive answer to the problem on semi-finite factor von Neumann algebra posed by Moln & aacute;r in the paper [A new look at local maps on algebraic structures of matrices and operators, New York J Math 28 (2022)].
引用
收藏
页数:8
相关论文
共 50 条
  • [21] 2-Local derivations on generalized Witt algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Yusupov, Baxtiyor
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16): : 3130 - 3140
  • [22] Local Lie derivations of factor von Neumann algebras
    Liu, Dan
    Zhang, Jianhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 208 - 218
  • [23] T-local Derivations of von Neumann Algebras
    詹建明
    谭志松
    NortheasternMathematicalJournal, 2004, (02) : 145 - 152
  • [24] Local derivations of nest subalgebras of von Neumann algebras
    Zhang, JH
    Ji, GX
    Cao, HX
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 392 : 61 - 69
  • [25] Characterizing Derivations on Von Neumann Algebras by Local Actions
    Qi, Xiaofei
    Ji, Jia
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [26] Characterizations of local Lie derivations on von Neumann algebras
    An, Guangyu
    Zhang, Xueli
    He, Jun
    Qian, Wenhua
    AIMS MATHEMATICS, 2022, 7 (05): : 7519 - 7527
  • [27] Derivations and 2-Local Derivations on Matrix Algebras and Algebras of Locally Measurable Operators
    Huang, Wenbo
    Li, Jiankui
    Qian, Wenhua
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 227 - 240
  • [28] Local and 2-local derivations of solvable Leibniz algebras
    Ayupov, Shavkat
    Khudoyberdiyev, Abror
    Yusupov, Bakhtiyor
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (06) : 1185 - 1197
  • [29] Weak-2-local derivations on finite von Neumann algebras
    Yang, Bing
    Fang, Xiaochun
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08): : 1520 - 1529
  • [30] Derivations and 2-Local Derivations on Matrix Algebras and Algebras of Locally Measurable Operators
    Wenbo Huang
    Jiankui Li
    Wenhua Qian
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 227 - 240