Denoising diffusion post-processing for low-light image enhancement

被引:3
|
作者
Panagiotou, Savvas [1 ]
Bosman, Anna S. [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, Pretoria, South Africa
关键词
Diffusion model; Denoising; Low-light image enhancement; Post-processing; QUALITY ASSESSMENT;
D O I
10.1016/j.patcog.2024.110799
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-light image enhancement (LLIE) techniques attempt to increase the visibility of images captured in low- light scenarios. However, as a result of enhancement, a variety of image degradations such as noise and color bias are revealed. Furthermore, each particular LLIE approach may introduce a different form of flaw within its enhanced results. To combat these image degradations, post-processing denoisers have widely been used, which often yield oversmoothed results lacking detail. We propose using a diffusion model as a post- processing approach, and we introduce Low-light Post-processing Diffusion Model (LPDM) in order to model the conditional distribution between under-exposed and normally-exposed images. We apply LPDM in a manner which avoids the computationally expensive generative reverse process of typical diffusion models, and post- process images in one pass through LPDM. Extensive experiments demonstrate that our approach outperforms competing post-processing denoisers by increasing the perceptual quality of enhanced low-light images on a variety of challenging low-light datasets. Source code is available at https://github.com/savvaki/LPDM.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Combining implicit and explicit priors for zero-reference low-light image enhancement and denoising
    Yu, Jinxia
    Xue, Fabao
    Huo, Zhanqiang
    Qiao, Yingxu
    MULTIMEDIA SYSTEMS, 2025, 31 (02)
  • [42] DLDiff: Image Detail-Guided Latent Diffusion Model for Low-Light Image Enhancement
    Xue, Minglong
    He, Yanyi
    He, Jinhong
    Zhong, Senming
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2255 - 2259
  • [43] A Novel Approach of Low-Light Image Denoising for Face Recognition
    Kang, Yimei
    Pan, Wang
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [44] Development of Denoising Method for Digital Image in Low-Light Condition
    Sari, Suhaila
    Al Fakkri, Sharifah Zahidah Hasan
    Roslan, Hazli
    Tukiran, Zarina
    2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2013), 2013, : 142 - 147
  • [45] Hybridization Denoising Method for Digital Image in Low-Light Condition
    Sari, Suhaila
    Al Fakkri, Sharifah Zahidah Hasan
    Roslan, Hazli
    Tukiran, Zarina
    ADVANCED COMPUTER AND COMMUNICATION ENGINEERING TECHNOLOGY, 2015, 315
  • [46] LET: a local enhancement transformer for low-light image enhancement
    Pan, Lei
    Tian, Jun
    Zheng, Yuan
    Fu, Qiang
    Zhao, Zhiqing
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [47] A Neural Network Based Low-Light Image Denoising Method
    Zhang, Dan
    Zhao, Lei
    Xu, Duanqing
    Lu, Dongming
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1868 - 1872
  • [48] Continuous detail enhancement framework for low-light image enhancement☆
    Liu, Kang
    Xv, Zhihao
    Yang, Zhe
    Liu, Lian
    Li, Xinyu
    Hu, Xiaopeng
    DISPLAYS, 2025, 88
  • [49] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [50] Low-light image enhancement for infrared and visible image fusion
    Zhou, Yiqiao
    Xie, Lisiqi
    He, Kangjian
    Xu, Dan
    Tao, Dapeng
    Lin, Xu
    IET IMAGE PROCESSING, 2023, 17 (11) : 3216 - 3234