Research on Lightweight Rice False Smut Disease Identification Method Based on Improved YOLOv8n Model

被引:1
|
作者
Yang, Lulu [1 ]
Guo, Fuxu [1 ]
Zhang, Hongze [1 ]
Cao, Yingli [1 ,2 ]
Feng, Shuai [1 ,2 ]
机构
[1] Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang 110866, Peoples R China
[2] Liaoning Key Lab Intelligent Agr Technol, Shenyang 110866, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 09期
关键词
rice false smut; digital imaging; YOLOv8n; feature fusion; lightweight network; FRUIT;
D O I
10.3390/agronomy14091934
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In order to detect rice false smut quickly and accurately, a lightweight false smut detection model, YOLOv8n-MBS, was proposed in this study. The model introduces the C2f_MSEC module to replace C2f in the backbone network for better extraction of key features of false smut, enhances the feature fusion capability of the neck network for different sizes of false smut by using a weighted bidirectional feature pyramid network, and designs a group-normalized shared convolution lightweight detection head to reduce the number of parameters in the model head to achieve model lightweight. The experimental results show that YOLOv8n-MBS has an average accuracy of 93.9%, a parameter count of 1.4 M, and a model size of 3.3 MB. Compared with the SSD model, the average accuracy of the model in this study increased by 4%, the number of parameters decreased by 89.8%, and the model size decreased by 86.9%; compared with the YOLO series of YOLOv7-tiny, YOLOv5n, YOLOv5s, and YOLOv8n models, the YOLOv8n-MBS model showed outstanding performance in terms of model accuracy and model performance detection; compared to the latest YOLOv9t and YOLOv10n models, the average model accuracy increased by 2.8% and 2.2%, the number of model parameters decreased by 30% and 39.1%, and the model size decreased by 29.8% and 43.1%, respectively. This method enables more accurate and lighter-weight detection of false smut, which provides the basis for intelligent management of rice blast disease in the field and thus promotes food security.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A Lightweight Person Detector for Surveillance Footage Based on YOLOv8n
    Wang, Qicheng
    Feng, Guoqiang
    Li, Zongzhe
    SENSORS, 2025, 25 (02)
  • [32] YOLOv8n_BT: Research on Classroom Learning Behavior Recognition Algorithm Based on Improved YOLOv8n
    Liu, Qingtang
    Jiang, Ruyi
    Xu, Qi
    Wang, Deng
    Sang, Zhiqiang
    Jiang, Xinyu
    Wu, Linjing
    IEEE ACCESS, 2024, 12 : 36391 - 36403
  • [33] YOLOv8-PD: an improved road damage detection algorithm based on YOLOv8n model
    Zeng, Jiayi
    Zhong, Han
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] A lightweight coal gangue detection method based on multispectral imaging and enhanced YOLOv8n
    Yan, Pengcheng
    Wang, Wenchang
    Li, Guodong
    Zhao, Yuting
    Wang, Jingbao
    Wen, Ziming
    MICROCHEMICAL JOURNAL, 2024, 199
  • [35] Research on identification and detection of coal and gangue based on infrared thermal imaging technology and improved YOLOv8n
    Wang, Yan
    Zhang, Zongtang
    Zhang, Xiulei
    Guan, Mingjuan
    Fang, Liao
    Li, Cong
    Ye, Xincheng
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2024,
  • [36] Research on Fabric Defect Detection Algorithm Based on Improved YOLOv8n Algorithm
    Mei, Shunqi
    Shi, Yishan
    Gao, Heng
    Tang, Li
    ELECTRONICS, 2024, 13 (11)
  • [37] Infrared image detection of defects in lightweight solar panels based on improved MSRCR and YOLOv8n
    Hong, Yan
    Pan, Ruixian
    Su, Jingming
    Li, Mushi
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [38] CAMLLA-YOLOv8n: Cow Behavior Recognition Based on Improved YOLOv8n
    Jia, Qingxiang
    Yang, Jucheng
    Han, Shujie
    Du, Zihan
    Liu, Jianzheng
    ANIMALS, 2024, 14 (20):
  • [39] A Lightweight Model of Underwater Object Detection Based on YOLOv8n for an Edge Computing Platform
    Fan, Yibing
    Zhang, Lanyong
    Li, Peng
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (05)
  • [40] Lightweight coal mine conveyor belt foreign object detection based on improved Yolov8n
    Jierui Ling
    Zhibo Fu
    Xinpeng Yuan
    Scientific Reports, 15 (1)