Predicting Particle Size and Soil Organic Carbon of Soil Profiles Using VIS-NIR-SWIR Hyperspectral Imaging and Machine Learning Models

被引:4
|
作者
de Oliveira, Karym Mayara [1 ]
Goncalves, Joao Vitor Ferreira [1 ]
Furlanetto, Renato Herrig [2 ]
de Oliveira, Caio Almeida [1 ]
Mendonca, Weslei Augusto [1 ]
Haubert, Daiane de Fatima da Silva [1 ]
Crusiol, Luis Guilherme Teixeira [3 ]
Falcioni, Renan [1 ]
de Oliveira, Roney Berti [1 ]
Reis, Amanda Silveira [1 ]
Ecker, Arney Eduardo do Amaral [4 ]
Nanni, Marcos Rafael [1 ]
机构
[1] Univ Estadual Maringa, Dept Agron, Ave Colombo 5790, BR-87020900 Maringa, PR, Brazil
[2] Univ Florida, Gulf Coast Res & Educ Ctr, Wimauma, FL 33598 USA
[3] Embrapa Soja Empresa Brasileira Pesquisa Agr, BR-86044764 Londrina, Parana, Brazil
[4] Ctr Univ Inga UNINGA, Dept Agron, Rod PR 317,6114, BR-87035510 Maringa, Parana, Brazil
关键词
data modeling; predictive model; remote sensing; spectroscopy of soils; spectral signature; REFLECTANCE SPECTROSCOPY; NITROGEN; TEXTURE;
D O I
10.3390/rs16162869
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Modeling spectral reflectance data using machine learning algorithms presents a promising approach for estimating soil attributes. Nevertheless, a comprehensive investigation of the most effective models, parameters, wavelengths, and data acquisition techniques is essential to ensure optimal predictive accuracy. This work aimed to (a) explore the potential of the soil spectral signature obtained in different spectral bands (VIS-NIR, SWIR, and VIS-NIR-SWIR) and, by using hyperspectral imaging and non-imaging sensors, in the predictive modeling of soil attributes; and (b) analyze the accuracy of different ML models in predicting particle size and soil organic carbon (SOC) applied to the spectral signature of different spectral bands. Six soil monoliths, located in the central north region of Parana, Brazil, were collected and scanned via hyperspectral cameras (VIS-NIR camera and SWIR camera) and spectroradiometer (VIS-NIR-SWIR) in the laboratory. The spectral signature of the soils was analyzed and subsequently applied to ML models to predict particle size and SOC. Each set of data obtained by the different sensors was evaluated separately. The algorithms used were k-nearest neighbors (KNN), support vector machine (SVM), random forest (RF), linear regression (LR), artificial neural network (NN), and partial least square regression (PLSR). The most promising predictive performance was observed for the complete VIS-NIR-SWIR spectrum, followed by SWIR and VIS-NIR. Meanwhile, KNN, RF, and NN models were the most promising algorithms in estimating soil attributes for the dataset obtained from both sensors. The general mean R2 (determination coefficient) values obtained using these models, considering the different spectral bands evaluated, were around 0.99, 0.98, and 0.97 for sand prediction, and around 0.99, 0.98, and 0.96 for clay prediction. The lower performances, obtained for the datasets from both sensors, were observed for silt and SOC, with R2 results between 0.40 and 0.59 for these models. KNN demonstrated the best predictive performance. Integrating effective ML models with robust sample databases, obtained by advanced hyperspectral imaging and spectroradiometers, can enhance the accuracy and efficiency of soil attribute prediction.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy
    Jiang, Qinghu
    Chen, Yiyun
    Guo, Long
    Fei, Teng
    Qi, Kun
    REMOTE SENSING, 2016, 8 (09):
  • [22] Strategies for predicting soil organic matter in the field using the Chinese Vis-NIR soil spectral library
    Yang, Meihua
    Chen, Songchao
    Xu, Dongyun
    Hong, Yongsheng
    Li, Shuo
    Peng, Jie
    Ji, Wenjun
    Guo, Xi
    Zhao, Xiaomin
    Shi, Zhou
    GEODERMA, 2023, 433
  • [23] Predicting the soil organic carbon by recent machine learning algorithms
    Uzair, Muhammad
    Tomasiello, Stefania
    Loit, Evelin
    Wei-Lin, Jerry Chun
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 1096 - 1102
  • [24] Estimation of soil properties using Hyperspectral imaging and Machine learning
    Chlouveraki, Eirini
    Katsenios, Nikolaos
    Efthimiadou, Aspasia
    Lazarou, Erato
    Kounani, Kalliopi
    Papakonstantinou, Eleni
    Vlachakis, Dimitrios
    Kasimati, Aikaterini
    Zafeiriou, Ioannis
    Espejo-Garcia, Borja
    Fountas, Spyros
    SMART AGRICULTURAL TECHNOLOGY, 2025, 10
  • [25] Deep Learning Application for Predicting Soil Organic Matter Content by VIS-NIR Spectroscopy
    Xu, Zhe
    Zhao, Xiaomin
    Guo, Xi
    Guo, Jiaxin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2019, 2019
  • [26] Predicting agricultural soil carbon using machine learning
    Nguyen, Thu Thuy
    NATURE REVIEWS EARTH & ENVIRONMENT, 2021, 2 (12) : 825 - 825
  • [27] Predicting agricultural soil carbon using machine learning
    Thu Thuy Nguyen
    Nature Reviews Earth & Environment, 2021, 2 : 825 - 825
  • [28] Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra
    Yang, Meihua
    Xu, Dongyun
    Chen, Songchao
    Li, Hongyi
    Shi, Zhou
    SENSORS, 2019, 19 (02):
  • [29] Quantitative Retrieval of Organic Soil Properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) Spectroscopy Using Fractal-Based Feature Extraction
    Liu, Lanfa
    Ji, Min
    Dong, Yunyun
    Zhang, Rongchung
    Buchroithner, Manfred
    REMOTE SENSING, 2016, 8 (12):
  • [30] Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem
    Vaudour, Emmanuelle
    Cerovic, Zoran G.
    Ebengo, Day M.
    Latouche, Gwendal
    SENSORS, 2018, 18 (04)