Short-term load forecasting based on different characteristics of sub-sequences and multi-model fusion

被引:1
|
作者
Chen, Changqing [1 ,2 ]
Yang, Xian [1 ]
Dai, Xueying [1 ]
Chen, Lisi [3 ]
机构
[1] Hunan City Univ, Key Lab Energy Montoring & Edge Comp Smart City, Yiyang 413002, Peoples R China
[2] Hunan Univ Sci & Technol, Xiangtan 411101, Peoples R China
[3] Hunan Zhongdao New Energy Co Ltd, Yiyang 413002, Peoples R China
关键词
Data decomposition and reconstruction; Multi-model fusion; Short-term load forecasting; Sub-sequence feature matrices; SUPPORT VECTOR REGRESSION; PREDICTION; MODEL;
D O I
10.1016/j.compeleceng.2024.109675
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid and accurate short-term load forecasting for distribution network is beneficial to ensure the safe and stable operation of power grid, reduce operating costs and improve the utilization rate of energy. Initially, through the data preprocessing minimizes the impact of outlier data on predictions. Subsequently, using variational mode decomposition and sample entropy methods separate modal components into high-frequency and low-frequency periodic sequences. Pearson correlation coefficient and principal component analysis are then employed to analyze feature parameter correlations, constructing distinct feature matrices for each Sub-sequence. High-frequency sequences are inputted into a prediction model combining time convolutional and bidirectional long short-term memory networks, while low-frequency periodic sequences are fed into a model combining auto regressive integral moving average and support vector regression. An illustrative analysis using January data from a Chinese province. Results indicate that compared with the 13-dimensional eigenmatrix, the proposed method saves 63 s in prediction time and improves the efficiency by 23.6 %. Mean absolute percentage error only decreased by 0.143 %, indicating that the method can ensure the prediction accuracy without losing robustness. Additionally, case analyses for different prediction durations (1 day and 1 week) exhibit promising results with mean absolute percentage error indices of 1.982 % and 2.022 %, indicating strong predictive performance.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Short-Term Load Forecasting Model Based on Deep Neural Network
    Xue Hui
    Wang Qun
    Li Yao
    Zhang Yingbin
    Shi Lei
    Zhang Zhisheng
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 589 - 591
  • [42] Short-term power load forecasting based on SKDR hybrid model
    Yuan, Yongliang
    Yang, Qingkang
    Ren, Jianji
    Mu, Xiaokai
    Wang, Zhenxi
    Shen, Qianlong
    Li, Yanan
    ELECTRICAL ENGINEERING, 2024,
  • [43] Short-term power load forecasting based on improved Autoformer model
    Fan X.
    Li Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (04): : 171 - 177
  • [44] TFTformer: A novel transformer based model for short-term load forecasting
    Ahmad, Ahmad
    Xiao, Xun
    Mo, Huadong
    Dong, Daoyi
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 166
  • [45] Temporal Convolutional Network Based Short-term Load Forecasting Model
    Gu, Kaiming
    Jia, Li
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 584 - 589
  • [46] Short-term Load Forecasting Model Based on IBFO-BILSTM
    Zhou, Zhengnan
    Wu, Guoqing
    Zhang, Xudong
    2019 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2020, 440
  • [47] Short-term load forecasting method with variational mode decomposition and stacking model fusion
    Zhang, Qian
    Wu, Junjie
    Ma, Yuan
    Li, Guoli
    Ma, Jinhui
    Wang, Can
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2022, 30
  • [48] Short-term Power Load Forecasting Based on TCN-BiLSTM-Attention and Multi-feature Fusion
    Feng, Yang
    Zhu, Jiashan
    Qiu, Pengjin
    Zhang, Xiaoqi
    Shuai, Chunyan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, : 5475 - 5486
  • [49] A hierarchical neural model in short-term load forecasting
    Carpinteiro, OAS
    da Silva, APA
    SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 120 - 124
  • [50] Application of RMLPNN model to short-term load forecasting
    Lu Jian-chang
    Sun Wei
    Li Jian-qiang
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 351 - 354