Tissue module discovery in single-cell-resolution spatial transcriptomics data via cell-cell interaction-aware cell embedding

被引:2
|
作者
Li, Yuzhe [1 ,2 ,3 ]
Zhang, Jinsong [1 ,2 ,4 ,5 ]
Gao, Xin [6 ,7 ,8 ]
Zhang, Qiangfeng Cliff [1 ,2 ,4 ]
机构
[1] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Frontier Res Ctr Biol Struct, Ctr Synthet & Syst Biol, Sch Life Sci, Beijing 100084, Peoples R China
[3] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
[4] Tsinghua Peking Ctr Life Sci, Beijing 100084, Peoples R China
[5] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
[6] King Abdullah Univ Sci & Technol KAUST, Comp Sci Program, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi Arabia
[7] King Abdullah Univ Sci & Technol KAUST, KAUST Computat Biosci Res Ctr CBRC, Thuwal 239556900, Saudi Arabia
[8] BioMap, Beijing 100086, Peoples R China
基金
中国国家自然科学基金;
关键词
GLYCOGEN CELLS; MOUSE; ATLAS; ARCHITECTURE; EXPRESSION;
D O I
10.1016/j.cels.2024.05.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Computational methods are desired for single-cell-resolution spatial transcriptomics (ST) data analysis to uncover spatial organization principles for how individual cells exert tissue-specific functions. Here, we present ST data analysis via interaction-aware cell embedding (SPACE), a deep-learning method for cell-type identification and tissue module discovery from single-cell-resolution ST data by learning a cell representation that captures its gene expression profile and interactions with its spatial neighbors. SPACE identified spatially informed cell subtypes defined by their special spatial distribution patterns and distinct proximal- interacting cell types. SPACE also automatically discovered "cell communities"-tissue modules with discernible boundaries and a uniform spatial distribution of constituent cell types. For each cell community, SPACE outputs a characteristic proximal cell-cell interaction network associated with physiological processes, which can be used to refine ligand-receptor-based intercellular signaling analyses. We envision that SPACE can be used in large-scale ST projects to understand how proximal cell-cell interactions contribute to emergent biological functions within cell communities. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:578 / 592.e7
页数:23
相关论文
共 50 条
  • [21] Temporally precise single-cell-resolution optogenetics
    Or A. Shemesh
    Dimitrii Tanese
    Valeria Zampini
    Changyang Linghu
    Kiryl Piatkevich
    Emiliano Ronzitti
    Eirini Papagiakoumou
    Edward S. Boyden
    Valentina Emiliani
    Nature Neuroscience, 2017, 20 : 1796 - 1806
  • [22] LR Hunting: A Random Forest Based Cell-Cell Interaction Discovery Method for Single-Cell Gene Expression Data
    Lu, Min
    Sha, Yifan
    Silva, Tiago C.
    Colaprico, Antonio
    Sun, Xiaodian
    Ban, Yuguang
    Wang, Lily
    Lehmann, Brian D.
    Chen, X. Steven
    FRONTIERS IN GENETICS, 2021, 12
  • [23] Investigating transcriptional states at single-cell-resolution
    Tischler, Julia
    Surani, M. Azim
    CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 (01) : 69 - 78
  • [24] CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics
    Jin, Suoqin
    Plikus, Maksim V.
    Nie, Qing
    NATURE PROTOCOLS, 2025, 20 (01) : 180 - 219
  • [25] Dimension reduction, cell clustering, and cell-cell communication inference for single-cell transcriptomics with DcjComm
    Ding, Qian
    Yang, Wenyi
    Xue, Guangfu
    Liu, Hongxin
    Cai, Yideng
    Que, Jinhao
    Jin, Xiyun
    Luo, Meng
    Pang, Fenglan
    Yang, Yuexin
    Lin, Yi
    Liu, Yusong
    Sun, Haoxiu
    Tan, Renjie
    Wang, Pingping
    Xu, Zhaochun
    Jiang, Qinghua
    GENOME BIOLOGY, 2024, 25 (01):
  • [26] Comparative analysis of cell-cell communication at single-cell resolution
    Wilk, Aaron J.
    Shalek, Alex K.
    Holmes, Susan
    Blish, Catherine A.
    NATURE BIOTECHNOLOGY, 2024, 42 (03) : 470 - 483
  • [27] SPASCER: spatial transcriptomics annotation at single-cell resolution
    Fan, Zhiwei
    Luo, Yangyang
    Lu, Huifen
    Wang, Tiangang
    Feng, YuZhou
    Zhao, Weiling
    Kim, Pora
    Zhou, Xiaobo
    NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D1138 - D1149
  • [28] Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development
    Kehui Liu
    Shanjun Deng
    Chang Ye
    Zeqi Yao
    Jianguo Wang
    Han Gong
    Li Liu
    Xionglei He
    Nature Methods, 2021, 18 : 1506 - 1514
  • [29] BACT: nonparametric Bayesian cell typing for single-cell spatial transcriptomics data
    Yan, Yinqiao
    Luo, Xiangyu
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [30] cgCorrect: a method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics
    Blasi, Thomas
    Buettner, Florian
    Strasser, Michael K.
    Marr, Carsten
    Theis, Fabian J.
    PHYSICAL BIOLOGY, 2017, 14 (03)