On the Use of Heterogeneous Graph Neural Networks for Detecting Malicious Activities: a Case Study with Cryptocurrencies

被引:0
|
作者
Ferretti, Stefano [1 ]
D'Angelo, Gabriele [2 ]
Ghini, Vittorio [2 ]
机构
[1] Univ Urbino, Dept Pure & Appl Sci, Urbino, Italy
[2] Univ Bologna, Dept Comp Sci & Engn, Bologna, Italy
关键词
Graph Neural Networks; Heterogeneous Graphs; Blockchain; Anti Money Laundering;
D O I
10.1145/3677117.3685009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a study on the application of Heterogeneous Graph Neural Networks (HGNNs) for enhancing the security of complex social systems by identifying illicit and malicious behaviors. We focus on digital asset tokenization, a key component in the construction of many innovative social services, with the aim of classifying token exchanges and identifying illicit activities. Utilizing the Elliptic++ dataset, we demonstrate the efficacy of HGNNs in identifying illicit activities in token-based exchanging applications. In particular, we evaluate four different HGNN architectures, i.e. Heterogeneous GAT, Heterogeneous SAGE, HGT (Heterogeneous Graph Transformer), and HAN (Heterogeneous Attention Network). Our results underscore the importance of characterizing and describing interactions in these complex systems, both for studying the system dynamics and for activating mechanisms to cope with cybersecurity issues, like misuses and usurpation of resources in social systems.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 50 条
  • [31] Interpretable Graph Neural Networks for Heterogeneous Tabular Data
    Alkhatib, Amr
    Bostrom, Henrik
    DISCOVERY SCIENCE, DS 2024, PT I, 2025, 15243 : 310 - 324
  • [32] Amalgamating Knowledge from Heterogeneous Graph Neural Networks
    Jing, Yongcheng
    Yang, Yiding
    Wang, Xinchao
    Song, Mingli
    Tao, Dacheng
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15704 - 15713
  • [33] Artist Similarity Based on Heterogeneous Graph Neural Networks
    da Silva, Angelo Cesar Mendes
    Silva, Diego Furtado
    Marcacini, Ricardo Marcondes
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 3717 - 3729
  • [34] DialGNN: Heterogeneous Graph Neural Networks for Dialogue Classification
    Yan, Yan
    Zhang, Bo-Wen
    Min, Peng-hao
    Ding, Guan-wen
    Liu, Jun-yuan
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [35] Multimodal Recipe Recommendation with Heterogeneous Graph Neural Networks
    Ouyang, Ruiqi
    Huang, Haodong
    Ou, Weihua
    Liu, Qilong
    ELECTRONICS, 2024, 13 (16)
  • [36] Heterogeneous Graph Neural Networks for Software Effort Estimation
    Phan, Hung
    Jannesari, Ali
    PROCEEDINGS OF THE16TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, ESEM 2022, 2022, : 103 - 113
  • [37] Providing a Hybrid Approach for Detecting Malicious Traffic on the Computer Networks Using Convolutional Neural Networks
    Pakanzad, Seyed Navid
    Monkaresi, Hamed
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 1189 - 1194
  • [38] Detecting Depression With Heterogeneous Graph Neural Network in Clinical Interview Transcript
    Li, Mingzheng
    Sun, Xiao
    Wang, Meng
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 1315 - 1324
  • [39] RAGN: Detecting unknown malicious network traffic using a robust adaptive graph neural network
    Akpaku, Ernest
    Chen, Jinfu
    Ahmed, Mukhtar
    Agbenyegah, Francis Kwadzo
    Leslie, William
    COMPUTER NETWORKS, 2025, 262
  • [40] Danger is ubiquitous: Detecting malicious activities in sensor networks using the dendritic cell algorithm
    Kim, Jungwon
    Bentley, Peter
    Wallenta, Christian
    Ahmed, Mohamed
    Hailes, Stephen
    ARTIFICIAL IMMUNE SYSTEMS, PROCEEDINGS, 2006, 4163 : 390 - 403