Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs

被引:1
|
作者
Filakovsky, Marek [1 ]
Nakajima, Tamio-Vesa [2 ]
Oprsal, Jakub [3 ]
Tasinato, Gianluca [4 ]
Wagner, Uli [4 ]
机构
[1] Masaryk Univ, Brno, Czech Republic
[2] Univ Oxford, Oxford, England
[3] Univ Birmingham, Birmingham, England
[4] IST Austria, Klosterneuburg, Austria
基金
欧盟地平线“2020”; 奥地利科学基金会;
关键词
constraint satisfaction problem; hypergraph colouring; promise problem; topological methods;
D O I
10.4230/LIPIcs.STACS.2024.34
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1,..., k such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the "linearly ordered chromatic number" of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Oprsal, Wrochna, and Zivny (2023).
引用
收藏
页数:19
相关论文
共 50 条
  • [31] 4-Cycle decompositions of complete 3-uniform hypergraphs
    Jordon, Heather
    Newkirk, Genevieve
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 71 : 312 - 323
  • [32] Judiciously 3-partitioning 3-uniform hypergraphs
    Spink, Hunter
    Tiba, Marius
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (04) : 1205 - 1221
  • [33] On the rainbow matching conjecture for 3-uniform hypergraphs
    Gao, Jun
    Lu, Hongliang
    Ma, Jie
    Yu, Xingxing
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (11) : 2423 - 2440
  • [34] BIG RAMSEY DEGREES OF 3-UNIFORM HYPERGRAPHS
    Balko, M.
    Chodounsky, D.
    Hubicka, J.
    Konecny, M.
    Vena, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 415 - 422
  • [35] On line graphs of linear 3-uniform hypergraphs
    Metelsky, Y
    Tyshkevich, R
    JOURNAL OF GRAPH THEORY, 1997, 25 (04) : 243 - 251
  • [36] Quasirandomness, counting and regularity for 3-uniform hypergraphs
    Gowers, WT
    COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2): : 143 - 184
  • [37] Counting small cliques in 3-uniform hypergraphs
    Peng, Y
    Rödl, V
    Skokan, J
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 371 - 413
  • [38] Edge-coloring of 3-uniform hypergraphs
    Obszarski, Pawel
    Jastrzebski, Andrzej
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 48 - 52
  • [39] On Generalized Ramsey Numbers for 3-Uniform Hypergraphs
    Dudek, Andrzej
    Mubayi, Dhruv
    JOURNAL OF GRAPH THEORY, 2014, 76 (03) : 217 - 223
  • [40] HAMILTON DECOMPOSITIONS OF COMPLETE 3-UNIFORM HYPERGRAPHS
    VERRALL, H
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 333 - 348