Note on intrinsic metrics on graphs

被引:0
|
作者
Lenz, Daniel [1 ]
Schmidt, Marcel [2 ]
Seifert, Felix [1 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Math, D-07743 Jena, Germany
[2] Univ Leipzig, Math Inst, Leipzig, Germany
关键词
LOCAL DIRICHLET SPACES; STOCHASTIC COMPLETENESS; RECURRENCE; LAPLACIAN; FORMS;
D O I
10.1002/mana.202400099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the set of intrinsic metrics on a given graph. This is a convex compact set and it carries a natural order. We investigate existence of largest elements with respect to this order. We show that the only locally finite graphs which admit a largest intrinsic metric are certain finite star graphs. In particular, all infinite locally finite graphs do not admit a largest intrinsic metric. For infinite graphs which are not locally finite the set of intrinsic metrics may be trivial as we show by an example. Moreover, we give a characterization for the existence of intrinsic metrics with finite balls for weakly spherically symmetric graphs.
引用
收藏
页码:4307 / 4321
页数:15
相关论文
共 50 条
  • [31] A note on the space of Kahler metrics
    Huang, Pengfei
    Hwu, Chi
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 116 : 1 - 9
  • [32] A NOTE ON METRICS OF PASCAL PROGRAMS
    DAVIES, G
    TAN, A
    SIGPLAN NOTICES, 1987, 22 (08): : 39 - 44
  • [33] A NOTE ON HIGHER EXTREMAL METRICS
    Pingali, Vamsi Pritham
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) : 6995 - 7010
  • [34] A Note on Circular Decomposable Metrics
    Victor Chepoi
    Bernard Fichet
    Geometriae Dedicata, 1998, 69 : 237 - 240
  • [35] A note on circular decomposable metrics
    Chepoi, V
    Fichet, B
    GEOMETRIAE DEDICATA, 1998, 69 (03) : 237 - 240
  • [36] Intrinsic Dimension Estimation for Discrete Metrics
    Macocco, Iuri
    Glielmo, Aldo
    Grilli, Jacopo
    Laio, Alessandro
    PHYSICAL REVIEW LETTERS, 2023, 130 (06)
  • [37] INTRINSIC METRICS IN COMPLETE CIRCULAR DOMAINS
    VENTURINI, S
    MATHEMATISCHE ANNALEN, 1990, 288 (03) : 473 - 481
  • [38] A CHARACTERIZATION OF THE BALL BY ITS INTRINSIC METRICS
    STANTON, CM
    MATHEMATISCHE ANNALEN, 1983, 264 (02) : 271 - 275
  • [39] A note on metrics induced by copulas
    Ouyang, Yao
    FUZZY SETS AND SYSTEMS, 2012, 191 : 122 - 125
  • [40] A Note on Discrete Einstein Metrics
    Ge, Huabin
    Mei, Jinlong
    Zhou, Da
    JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (02): : 160 - 168