Deep learning-based temperature prediction during rotary ultrasonic bone drilling

被引:0
|
作者
Agarwal, Yash [1 ]
Gupta, Satvik [1 ]
Singh, Jaskaran [1 ]
Gupta, Vishal [1 ]
机构
[1] Thapar Inst Engn & Technol, Mech Engn Dept, Patiala 147004, Punjab, India
关键词
Bone drilling; deep learning; rotary ultrasonic bone drilling; bone damage; temperature prediction; THERMAL NECROSIS; CORTICAL BONE; OPTIMIZATION; PARAMETERS; OSTEONECROSIS; RISE;
D O I
10.1177/09544089241279242
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Bone drilling is a common but critical medical procedure in orthopedic surgeries used to treat fractured bones. During this procedure, the temperature of the bone increases due to generation of frictional energy. Temperature control has been a major challenge in bone drilling since its foundation. If this temperature increases over 47 degrees C for 1 min, then it can result in permanent bone damage. To control the temperature elevation this study proposes a deep learning-based robust predictive model which has been trained and tested on data from pig bones. Excessive in-house testing has been done on pig femur bones to gather data and verify the results. Rotary ultrasonic bone drilling was the machining process used for drilling. Four independent variables which were rotational speed, feed rate, abrasive grit size, and vibrational ultrasonic power were varied and the temperature for each set of values was recorded. Multiple deep learning models were made and were compared on different error metrics. It was found that convolutional neural network 1D gave the least error over other models. The error generated by deep learning models was less than mathematical and experimental models.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Deep Learning-Based Chemical System for QSAR Prediction
    Hu, ShanShan
    Chen, Peng
    Gu, Pengying
    Wang, Bing
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (10) : 3020 - 3028
  • [32] Deep Learning-Based Channel Prediction With Path Extraction
    Meliha, Mehdi
    Charge, Pascal
    Wang, Yide
    Bouzid, Salah Eddine
    Henry, Christophe
    Bourny, Christophe
    Tomaz, Henrique
    Chen, Yejian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 891 - 895
  • [33] DEEP LEARNING-BASED PERSONALIZED SURVIVAL PREDICTION FOR MEDULLOBLASTOMA
    Stefan, Sabina
    Northcott, Paul
    Hovestadt, Volker
    NEURO-ONCOLOGY, 2023, 25
  • [34] Deep Learning-Based Discrete Calibrated Survival Prediction
    Fuhlert, Patrick
    Ernst, Anne
    Dietrich, Esther
    Westhaeusser, Fabian
    Kloiber, Karin
    Bonn, Stefan
    2022 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (IEEE ICDH 2022), 2022, : 169 - 174
  • [35] Deep Learning-Based Model for Financial Distress Prediction
    Elhoseny, Mohamed
    Metawa, Noura
    Sztano, Gabor
    El-hasnony, Ibrahim M.
    ANNALS OF OPERATIONS RESEARCH, 2025, 345 (2-3) : 885 - 907
  • [36] Deep Learning-Based Advances in Protein Structure Prediction
    Pakhrin, Subash C.
    Shrestha, Bikash
    Adhikari, Badri
    KC, Dukka B.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [37] Deep learning-based prediction of ship transit time
    Yoo, Sang-Lok
    Kim, Kwang-Il
    OCEAN ENGINEERING, 2023, 280
  • [38] A Deep Learning-Based Approach for Foot Placement Prediction
    Lee, Sung-Wook
    Asbeck, Alan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4959 - 4966
  • [39] A deep learning-based framework for road traffic prediction
    Redouane Benabdallah Benarmas
    Kadda Beghdad Bey
    The Journal of Supercomputing, 2024, 80 : 6891 - 6916
  • [40] Deep Learning-Based Defect Prediction for Mobile Applications
    Jorayeva, Manzura
    Akbulut, Akhan
    Catal, Cagatay
    Mishra, Alok
    SENSORS, 2022, 22 (13)