Short-Term Traffic Forecasting: An LSTM Network for Spatial-Temporal Speed Prediction

被引:17
|
作者
Abduljabbar, Rusul L. [1 ]
Dia, Hussein [1 ]
Tsai, Pei-Wei [2 ]
Liyanage, Sohani [1 ]
机构
[1] Swinburne Univ Technol, Dept Civil & Construct Engn, Hawthorn, Vic 3122, Australia
[2] Swinburne Univ Technol, Dept Comp Sci & Software Engn, Hawthorn, Vic 3122, Australia
来源
FUTURE TRANSPORTATION | 2021年 / 1卷 / 01期
关键词
machine learning; short-term prediction; spatial and temporal analysis; speed forecasting; FLOW PREDICTION; NEURAL-NETWORK;
D O I
10.3390/futuretransp1010003
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Traffic forecasting remains an active area of research in the transport and data science fields. Decision-makers rely on traffic forecasting models for both policy-making and operational management of transport facilities. The wealth of spatial and temporal real-time data increasingly available from traffic sensors on roads provides a valuable source of information for policymakers. This paper adopts the Long Short-Term Memory (LSTM) recurrent neural network to predict speed by considering both the spatial and temporal characteristics of real-time sensor data. A total of 288,653 real-life traffic measurements were collected from detector stations on the Eastern Freeway in Melbourne/Australia. A comparative performance analysis among different models such as the Recurrent Neural Network (RNN) that has an internal memory that is able to remember its inputs and Deep Learning Backpropagation (DLBP) neural network approaches are also reported. The LSTM results showed average accuracies in the outbound direction ranging between 88 and 99 percent over prediction horizons between 5 and 60 min, and average accuracies between 96 and 98 percent in the inbound direction. The models also showed resilience in accuracies as the prediction horizons increased spatially for distances up to 15 km, providing a remarkable performance compared to other models tested. These results demonstrate the superior performance of LSTM models in capturing the spatial and temporal traffic dynamics, providing decision-makers with robust models to plan and manage transport facilities more effectively.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [21] A Regularized LSTM Network for Short-Term Traffic Flow Prediction
    Wang, Zhan
    Zhu, Rui
    Zheng, Ming
    Jia, Xuebin
    Wang, Runfang
    Li, Tong
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 100 - 105
  • [22] A Short-term Traffic Speed Prediction Model Based on LSTM Networks
    Hsueh, Yu-Ling
    Yang, Yu-Ren
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2021, 19 (03) : 510 - 524
  • [23] A Short-term Traffic Speed Prediction Model Based on LSTM Networks
    Yu-Ling Hsueh
    Yu-Ren Yang
    International Journal of Intelligent Transportation Systems Research, 2021, 19 : 510 - 524
  • [24] Spatial-Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 92 - 103
  • [25] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [26] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    HighTechnologyLetters, 2024, 30 (03) : 221 - 230
  • [27] Short-term Passenger Flow Forecasting of the Airport Based on Deep Learning Spatial-temporal Network
    Xu, Wenjia
    Miao, Lixin
    Xing, Jinjiang
    2022 THE 9TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS-EUROPE, ICIEA 2022-EUROP, 2022, : 77 - 83
  • [28] Short-term traffic flow forecasting using a distributed spatial-temporal k nearest neighbors model
    Agafonov, Anton
    Yumaganov, Alexander
    2018 21ST IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2018), 2018, : 91 - 98
  • [29] Short-term Traffic Flow Prediction with LSTM Recurrent Neural Network
    Kang, Danqing
    Lv, Yisheng
    Chen, Yuan-yuan
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [30] Multi-Lane Short-Term Traffic Forecasting With Convolutional LSTM Network
    Ma, Yixuan
    Zhang, Zhenji
    Ihler, Alexander
    IEEE ACCESS, 2020, 8 : 34629 - 34643