Light scattering of an arbitrarily oriented cubic particle within the Wentzel-Kramers-Brillouin approach

被引:0
|
作者
Tari, E. M. [1 ]
Zahraoui, S. [2 ]
Ibnchaikh, M. [1 ]
Hachem, N. [3 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, El Jadida, Morocco
[2] Ctr Reg Metiers Educ Format, Rabat Irfane, Morocco
[3] Chouaib Doukkali Univ, Fac Sci, Lab LPMC, Theoret Phys Team, El Jadida, Morocco
来源
EUROPEAN PHYSICAL JOURNAL D | 2024年 / 78卷 / 10期
关键词
DISCRETE-DIPOLE APPROXIMATION;
D O I
10.1140/epjd/s10053-024-00919-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Wentzel-Kramers-Brillouin approximation is applied to study the light scattering properties of an arbitrarily oriented cubic particle. The form factor and extinction coefficient of this particle are expressed in simple analytical expressions. The effects of certain physical parameters, namely angles of incidence, scattering azimuthal and zenith angles, refractive index and size parameter, on the form factor and extinction coefficient are analyzed. Some numerical examples are also presented to illustrate the results.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Eigenfrequencies of a truncated conical resonator via the classical and Wentzel-Kramers-Brillouin methods
    Van't Hof, Jonathan P.
    Stancil, Daniel D.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (08) : 1909 - 1916
  • [42] Wentzel-Kramers-Brillouin quantization rules for two-dimensional quantum dots
    Sinha, A
    Roychoudhury, R
    Varshni, YP
    PHYSICA B-CONDENSED MATTER, 2003, 325 (1-4) : 214 - 223
  • [43] Light scattering by a nematic liquid crystal droplet: Wentzel–Kramers–Brillouin approximation
    V. A. Loiko
    A. V. Konkolovich
    A. A. Miskevich
    Journal of Experimental and Theoretical Physics, 2016, 122 : 176 - 192
  • [44] Paraxial Wentzel-Kramers-Brillouin method applied to the lower hybrid wave propagation
    Bertelli, N.
    Maj, O.
    Poli, E.
    Harvey, R.
    Wright, J. C.
    Bonoli, P. T.
    Phillips, C. K.
    Smirnov, A. P.
    Valeo, E.
    Wilson, J. R.
    PHYSICS OF PLASMAS, 2012, 19 (08)
  • [45] THE WENTZEL-KRAMERS-BRILLOUIN METHOD IN MULTIDIMENSIONAL TUNNELING - APPLICATION TO SCANNING TUNNELING MICROSCOPY
    HUANG, ZH
    FEUCHTWANG, TE
    CUTLER, PH
    KAZES, E
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (01): : 177 - 181
  • [46] Wentzel-Kramers-Brillouin analysis of PT-symmetric Sturm-Liouville problems
    Bender, Carl M.
    Jones, Hugh F.
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [47] Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar
    Prokopovich, Igor
    Popov, Alexei
    Pajewski, Lara
    Marciniak, Marian
    REMOTE SENSING, 2018, 10 (01):
  • [48] Novel way for full characterisation of splayed retarders using Wentzel-Kramers-Brillouin method
    Jung, CC
    Stumpe, J
    Peeters, E
    van der Zande, BMI
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (6A): : 4000 - 4005
  • [50] WENTZEL-KRAMERS-BRILLOUIN THEORY OF MULTIDIMENSIONAL TUNNELING - GENERAL-THEORY FOR ENERGY SPLITTING
    TAKADA, S
    NAKAMURA, H
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (01): : 98 - 113