Parallelization of Three Dimensional Cardiac Simulation on GPU

被引:0
|
作者
Li, Qin [1 ]
Zhu, Xin [2 ]
Chen, Wenxi [1 ]
机构
[1] Univ Aizu, Grad Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima 9658580, Japan
[2] Tokyo Med & Dent Univ, M&D Data Sci Ctr, Dept AI Technol Dev, Tokyo 1010062, Japan
关键词
simulation; modeling; cardiac electrophysiology; parallelization; GPU; MODEL; ALGORITHM; BIDOMAIN;
D O I
10.3390/biomedicines12092126
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The simulation of electrophysiological cardiac models plays an important role in facilitating the investigation of cardiac behavior under various conditions. However, these simulations often require a lot of computational resources. Methods: To address this challenge, this study introduced a method for speeding up three-dimensional cardiac simulations using GPU parallelization. A series of optimizations was introduced, encompassing various aspects such as data storage, algorithmic enhancements, and data transfer. Results: The experimental results reveal that the optimized GPU parallel simulations achieve an approximate 50-fold acceleration compared with their CPU serial program. Conclusion: This investigation substantiates the considerable potential of GPUs in advancing the field of cardiac electrophysiology simulations.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Cardiac simulation on multi-GPU platform
    Nimmagadda, Venkata Krishna
    Akoglu, Ali
    Hariri, Salim
    Moukabary, Talal
    JOURNAL OF SUPERCOMPUTING, 2012, 59 (03): : 1360 - 1378
  • [22] Cardiac simulation on multi-GPU platform
    Venkata Krishna Nimmagadda
    Ali Akoglu
    Salim Hariri
    Talal Moukabary
    The Journal of Supercomputing, 2012, 59 : 1360 - 1378
  • [23] GPU Parallelization of Algebraic Dynamic Programming
    Steflen, Peter
    Giegerich, Robert
    Giraud, Mathieu
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PART II, 2010, 6068 : 290 - +
  • [24] NCTR recognition algorithms and GPU parallelization
    Algorithmes de reconnaissance NCTR et parallélisation sur GPU
    1600, Lavoisier (30):
  • [25] Parallelization of MODFLOW Using a GPU Library
    Ji, Xiaohui
    Li, Dandan
    Cheng, Tangpei
    Wang, Xu-Sheng
    Wang, Qun
    GROUNDWATER, 2014, 52 (04) : 618 - 623
  • [26] Parallelization of the numerical simulation of motion of deformable objects within fluid domain on a GPU device
    Djukic T.
    Filipovic N.
    Djukic, T. (tijana@kg.ac.rs), 2018, European Alliance for Innovation (04)
  • [27] Efficient Method of Moment Simulation Based on Higher Order Bases and CPU/GPU Parallelization
    Kolundzija, Branko
    Olcan, Dragan
    Zoric, Dusan
    2012 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2012,
  • [28] Algorithms of NCTR reconnaissance and parallelization on GPU
    Boulay, Thomas
    Gae, Nicolas
    Mohammad-Djafari, Ali
    Lagoutte, Julien
    TRAITEMENT DU SIGNAL, 2013, 30 (06) : 309 - 342
  • [29] GPU parallelization strategies for metaheuristics: a survey
    Essaid, Mokhtar
    Idoumghar, Lhassane
    Lepagnot, Julien
    Brevilliers, Mathieu
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2019, 34 (05) : 497 - 522
  • [30] Parallelization of cellular neural networks on GPU
    Ho, Tze-Yui
    Lam, Ping-Man
    Leung, Chi-Sing
    PATTERN RECOGNITION, 2008, 41 (08) : 2684 - 2692