Thermal performance of parabolic trough collector using oil-based metal nanofluids

被引:2
|
作者
Talem, Naima [1 ,2 ,3 ]
Mihoub, Sofiane [4 ]
Boumia, Lakhdar [1 ,3 ]
Safa, Abdelkader [4 ]
Navas, Javier [5 ]
Estelle, Patrice [6 ]
Benayad, Zouaoui [7 ]
机构
[1] Tissemsilt Univ, Fac Sci & Technol, Dept Matter Sci, Tissemsilt, Algeria
[2] Univ Sci & Technol Mohamed Boudiaf, Lab Phys Studies Mat, Oran 31000, Algeria
[3] Univ Tissemsilt, Fac Sci & Technol, Lab Elect Informat & Math Appl LEIMA, Tissemsilt 38000, Algeria
[4] Univ TIARET, Mat & Struct Lab, Tiaret, Algeria
[5] Univ Cadiz, Dept Phys Chem, E-11510 Puerto Real, Spain
[6] Univ Rennes, LGCGM, FR-35000 Rennes, France
[7] Univ Ctr Maghnia, Maghnia, Algeria
关键词
Parabolic trough collector; Nanofluid; Heat transfer; Finite Volume Method; Fluent software; Turbulence k-epsilon; RNG model; HEAT-TRANSFER; SOLAR COLLECTOR; THERMODYNAMIC PERFORMANCE; THERMOPHYSICAL PROPERTIES; NANOPARTICLES; OPTIMIZATION; SIMULATION; EFFICIENCY; RECEIVER; FLOW;
D O I
10.1016/j.applthermaleng.2024.124128
中图分类号
O414.1 [热力学];
学科分类号
摘要
Applying nanofluids in heat transfer systems is an innovative approach to improve the weak thermal characteristics of thermal oils. In this work, the thermal performance of a parabolic trough solar collector using Dowtherm A oil-based nanofluid along with Pd, Au, and NiO nanoparticles as an operating fluid within the receiver tube was numerically investigated from the Finite Volume Method and turbulent flow condition. Originally, we considered the real thermophysical properties of stable nanofluids that were experimentally evaluated. Furthermore, the simulations are carried out using the state turbulence k-epsilon RNG model for various thermal flow conditions. The collector performance parameters such as static temperature, velocity magnitude, and dynamic pressure were assessed while taking into account the influence of nanofluid properties, heat flux, nanoparticle concentration, receiver tube diameter, nanofluid inlet temperature, and nanofluid inlet velocity. A MATLAB-based computational model is developed to investigate the outlet thermal energy efficiency of PTC considering all prior parameter impacts. The results show that the type, length, diameter, and concentration of the nanoparticles significantly impact the PTC performance such as outlet temperature and thermal energy efficiency. Thus, the Au-based nanofluid reached the greatest outlet temperature, with a maximum gain of around 8 % from 320 K to 347.5 K. Furthermore, the temperature difference and inlet velocity of nanofluid are the key factors influencing the thermal energy efficiency of PTC. A high-temperature difference of around 40 K was achieved with Au-based nanofluid at an inlet temperature of 298 K and a high inlet velocity of 0.5 m/s resulting in high outlet thermal energy efficiency of 50 %. Analysis of the performance evaluation criteria shows that Dowtherm A containing 0.0097 wt% of Au nanoparticles is the optimal nanofluid achieving the highest static temperature and PTC thermal energy efficiency.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Performance evaluation of a novel parabolic trough solar collector with nanofluids and porous inserts
    Panja, Sovan Kumar
    Das, Biplab
    Mahesh, Vinyas
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [32] Experimental analysis of thermal performance of direct absorption parabolic trough collector integrating water based nanofluids for sustainable environment applications
    Raza, Syed Husnain
    Qamar, Adnan
    Noor, Fahad
    Riaz, Fahid
    Usman, Muhammad
    Farooq, Muhammad
    Sultan, M.
    Rehman, Ateekh Ur
    Shahzadi, Anam
    Andresen, John M.
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 49
  • [33] Experimental results of using a parabolic trough solar collector for thermal treatment of crude oil
    Mammadov, F.
    Samadova, U.
    Salamov, O.
    JOURNAL OF ENERGY IN SOUTHERN AFRICA, 2008, 19 (01) : 70 - 76
  • [34] Economic Analysis on the Integration of Oil-based Parabolic trough Solar Collector and the Steam Turbine Regenerative System
    Wang, Yi-song
    Du, Tao
    Liu, Li-ying
    Che, Shuai
    Song, Yan-li
    Fang, Xin
    2016 IEEE INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2016, : 675 - 679
  • [35] Numerical Study on Thermal Performance of Solar Parabolic Trough Collector
    Ghasemi, Seyed Ebrahim
    Ranjbar, Ali Akbar
    Ramiar, Abbas
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 7 (01): : 1 - 12
  • [36] Performance study of parabolic trough solar collector using hybrid nanofluids under Jordanian weather conditions
    Al-Oran, Otabeh
    Abu Shaban, Nabeel
    Manna, Rafiq
    Ayadi, Osama
    A'saf, Ahmad
    Lezsovits, Ferenc
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (09) : 3981 - 3998
  • [37] Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids
    Qin, Caiyan
    Kim, Joong Bae
    Lee, Bong Jae
    RENEWABLE ENERGY, 2019, 143 : 24 - 33
  • [38] Modelling and Comparison of the Thermohydraulic Performance with an Economical Evaluation for a Parabolic Trough Solar Collector Using Different Nanofluids
    Ouabouch, Omar
    Laasri, Imad Ait
    Kriraa, Mounir
    Lamsaadi, Mohamed
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2021, 39 (06) : 1763 - 1769
  • [39] Thermal Study of a Parabolic Trough Collector
    Messadi, Asma
    Timoumi, Youssef
    Design and Modeling of Mechanical Systems - II, 2015, : 811 - 821
  • [40] Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids
    Otabeh Al-Oran
    Ferenc Lezsovits
    Ayham Aljawabrah
    Journal of Thermal Analysis and Calorimetry, 2020, 140 : 1579 - 1596