NONPARAMETRIC CLASSIFICATION WITH MISSING DATA

被引:0
|
作者
Sell, Torben [1 ,2 ]
Berrett, Thomas b. [3 ]
Cannings, Timothy i. [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Scotland
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh, Scotland
[3] Univ Warwick, Dept Stat, Coventry, England
来源
ANNALS OF STATISTICS | 2024年 / 52卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
Missing data; classification; minimax; MINIMAX RATE; DISCRIMINATION;
D O I
10.1214/24-AOS2389
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new nonparametric framework for classification problems in the presence of missing data. The key aspect of our framework is that the regression function decomposes into an anova-type sum of orthogonal functions, of which some (or even many) may be zero. Working under a general missingness setting, which allows features to be missing not at random, our main goal is to derive the minimax rate for the excess risk in this problem. In addition to the decomposition property, the rate depends on parameters that control the tail behaviour of the marginal feature distributions, the smoothness of the regression function and a margin condition. The ambient data dimension does not appear in the minimax rate, which can therefore be faster than in the classical nonparametric setting. We further propose a sifier, based on a careful combination of a k-nearest neighbour algorithm and a thresholding step. The HAM classifier attains the minimax rate up to polylogarithmic factors and numerical experiments further illustrate its utility.
引用
收藏
页码:1178 / 1200
页数:23
相关论文
共 50 条
  • [21] Nonparametric estimation for survival data with censoring indicators missing at random
    Brunel, E.
    Comte, F.
    Guilloux, A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (10) : 1653 - 1671
  • [22] Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    Faes, C.
    Ormerod, J. T.
    Wand, M. P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 959 - 971
  • [24] MULTIPLY ROBUST NONPARAMETRIC MULTIPLE IMPUTATION FOR THE TREATMENT OF MISSING DATA
    Chen, Sixia
    Haziza, David
    STATISTICA SINICA, 2019, 29 (04) : 2035 - 2053
  • [25] MISSING DATA RECOVERY VIA A NONPARAMETRIC ITERATIVE ADAPTIVE APPROACH
    Stoica, Petre
    Li, Jian
    Ling, Jun
    Cheng, Yubo
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3369 - +
  • [26] A Nonparametric Test of Missing Completely at Random for Incomplete Multivariate Data
    Jun Li
    Yao Yu
    Psychometrika, 2015, 80 : 707 - 726
  • [27] Missing Data Recovery Via a Nonparametric Iterative Adaptive Approach
    Stoica, Petre
    Li, Jian
    Ling, Jun
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (04) : 241 - 244
  • [28] Model checks for nonparametric regression with missing data: a comparative study
    Cotos-Yanez, T. R.
    Perez-Gonzalez, A.
    Gonzalez-Manteiga, W.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (16) : 3188 - 3204
  • [29] Nonparametric -type regression estimation under missing response data
    Luo, Shuanghua
    Zhang, Cheng-yi
    STATISTICAL PAPERS, 2016, 57 (03) : 641 - 664
  • [30] An application of nonparametric regression to missing data in large market surveys
    Madden, Gary
    Apergis, Nicholas
    Rappoport, Paul
    Banerjee, Aniruddha
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (07) : 1292 - 1302